Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề bài a+b2⋮a2b−1
\(\Rightarrow\) ∃ k∈ N* : a+b2=k(a2b−1)
\(\Leftrightarrow\) a+k=b(ka2−b)
Đặt m=ka2−b (m\(\in\)Z) thì ta được a+k=mb
Mặt khác do a,k,b \(\in\) N* nên cho ta m\(\in\)N*
Từ đó ta có:
(m−1)(b−1)=mb−m−b+1=a+k−ka2+1=(a+1)(k−ka+1)
Vì m,b ∈ N* nên (m−1)(b−1) ≥ 0
\(\Rightarrow\) (a+1)(k−ka+1) ≥ 0 \(\Rightarrow\) (k−ka+1)≥ 0
\(\Rightarrow\) 1 ≥ k(a−1)
Lúc này vì k,a ∈ N* nên a−1 ≥ 0. Suy ra chỉ có thể xảy ra 2 trường hợp:
Trường hợp 1: k(a−1)=0 ⇒ a−1=0 hay a=1
Thay a=1 vào đẳng thức (m−1)(b−1)=(a+1)(k−ka+1) ta được
(m−1)(b−1)=2 ⇒ b−1=1∨b−1=2 ⇒ b=2∨b=3
Trường hợp 2: k(a−1)=1 ⇒ k=a−1=1 hay k=1∧a=2
Thay k=1 và a=2 vào đẳng thức (m−1)(b−1)=(a+1)(k−ka+1) ta được
(m−1)(b−1)=0 ⇒ m−1=0∨b−1=0 ⇒ m=1∨b=1
Nếu như m=1 thì từ đẳng thức a+k=mb cho ta b=3
Vậy có 4 cặp số nguyên dương (a,b) thỏa yêu cầu bài toán là (1,2);(1,3);(2,1);(2,3)
Ai chs opoke đại chiên lh mik nha! Đỏi lấy nick olm hoặc cho mik
Bạn tham khảo:
3a−b+2ab−10
⇒2ab−b+3a=10
⇒b(2a−1)+3a=10
⇒2b(2a−1)+6a=10.2
⇒2b(2a−1)+6a−3=20−3
⇒2b(2a−1)+3(2a−1)=17
⇒(2a−1)(2b+3)=17
⇒2a−1∈Ư(17)=⇒2a−1∈Ư(17)= { ±1;±17±1;±17 }
.) Nếu 2a−1=12a−1=1 thì 2b+3=172b+3=17
⇒a=1;b=7
.) Nếu 2a−1=−12a−1=−1 thì 2b+3=−172b+3=−17
⇒a=0;b=−10
.) Nếu 2a−1=172a−1=17 thì 2b+3=12b+3=1
⇒a=9;b=−1
.) Nếu 2a−1=−172a−1=−17 thì 2b+3=−12b+3=−1
⇒a=−8;b=−2
\(2ab-a-b=2\)
\(\Leftrightarrow2a\left(b-\frac{1}{2}\right)-\left(b-\frac{1}{2}\right)=\frac{3}{2}\)
\(\Leftrightarrow\left(b-\frac{1}{2}\right)\left(2a-1\right)=\frac{3}{2}\)
\(\Leftrightarrow\left(2a-1\right)\left(2b-1\right)=3\)
Xét ước nhé bạn