K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2015

Trục đối xứng của parabol là đường thẳng x = -b/(2a) => -b/(2a) = 5/6

=> b = -5/3 a      (1)

đồ thị đia qua M(2,4) => 4 = a.22  + b,2 + 2

=> 4a + 2b = 2     (2)

Thay (1) vào (2):

    4a - 10/3 a = 2

=> a = ...

=> b = -5/3 a

23 tháng 12 2015

(P): ax2+bx+c có đỉnh $I(-\frac{b}{2a};-\frac{\Delta}{4a})$, trục đối xứng $x=-\frac{b}{2a}$

a) b=-2a, $\Delta=b^2-4ac=-8a$ nên a-c=-2. Lại có (P) qua M nên a-b+c=-2. Vậy a=-1,b=2,c=1 nên (P):-​-​x2+2x+1

b) b=-4a. Lại có (P) qua A,B nên a+b+c=-6, 16a+4b+c=3. Suy ra a=3, b=-12, c=3. Vậy (P):3x2-12x+3

DD
6 tháng 9 2021

\(y=ax^2+bx-7\)đi qua điểm \(A\left(-1,-6\right)\)nên \(a-b-7=-6\Leftrightarrow a-b=1\)(1)

\(y=ax^2+bx-7\)có trục đối xứng \(x=-\frac{1}{3}\)nên \(\frac{-b}{2a}=-\frac{1}{3}\Leftrightarrow2a-3b=0\)(2)

Từ (1) và (2) suy ra \(\hept{\begin{cases}a=3\\b=2\end{cases}}\)

\(a^2-b^2=3^2-2^2=5\).

6 tháng 9 2021

Vào thăm trang cá nhân của tớ nhá

22 tháng 10 2016

(P) đi qua A(1;-4) nên ta có : \(a+b+c=-4\) (1)

(P) tiếp xúc với trục hoành tại x = 3, tức là \(\begin{cases}9a+3b+c=0\\\frac{-b}{2a}=3\end{cases}\)

Từ đó ta có hệ : \(\begin{cases}a+b+c=-4\\9a+3b+c=0\\6a+b=0\end{cases}\) \(\Leftrightarrow\begin{cases}a=-1\\b=6\\c=-9\end{cases}\)

24 tháng 9 2019

y=-2x^2-3x+4

24 tháng 9 2019

Hi cj iu ! Mà s cj onl muộn thế ,pé sắp ngủ òi !

Bài 2: 

a: Theo đề, ta có:

\(\left\{{}\begin{matrix}a+b+c=0\\c=5\\\dfrac{-b}{2a}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=-5\\b=-6a\\c=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-5a=-5\\b=-6a\\c=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=-6\\c=5\end{matrix}\right.\)

b: Theo đề, ta có:

\(\left\{{}\begin{matrix}4a+2b+c=3\\\dfrac{-b}{2a}=3\\-\dfrac{b^2+4ac}{4a}=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4a+2b+c=3\\b=-6a\\\left(-6a\right)^2+4ac=-16a\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4a-12a+c=3\\b=-6a\\36a^2+16a+4ac=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=8a+3\\b=-6a\\36a^2+16a+4a\left(8a+3\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{7}{17}\\b=6\cdot\dfrac{7}{17}=\dfrac{42}{17}\\c=8\cdot\dfrac{-7}{17}+3=-\dfrac{5}{17}\end{matrix}\right.\)