Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^2+4b^2+9=2ab+3a+6b\)
\(\Leftrightarrow2a^2+8b^2+18=4ab+6a+12b\)
\(\Leftrightarrow\left(a^2-4ab+4b^2\right)+\left(a^2-6a+9\right)+\left(4b^2-12b+9\right)=0\)
\(\Leftrightarrow\left(a-2b\right)^2+\left(a-3\right)^2+\left(2b-3\right)^2=0\) \(\Rightarrow\left\{{}\begin{matrix}\left(a-2b\right)^2=0\\\left(a-3\right)^2=0\\\left(2b-3\right)^2=0\end{matrix}\right.\)
(do \(\left(a-2b\right)^2\ge0;\left(a-3\right)^2=0;\left(2b-3\right)^2=0\) )
\(\Leftrightarrow\left\{{}\begin{matrix}a=3\\b=\frac{3}{2}\end{matrix}\right.\) Vậy (a;b)=(3;3/2)
\(\Leftrightarrow2\left(a^2+4b^2+9\right)=2\left(2ab+3a+6b\right)\)
\(\Leftrightarrow2a^2+8b^2+18-4ab-6a-12b=0\)
\(\Leftrightarrow\left(a^2-4ab+4b^2\right)+\left(a^2-6a+9\right)+\left(4b^2-12b+9\right)=0\)
\(\Leftrightarrow\left(a-2b\right)^2+\left(a-3\right)^2+\left(2b-3\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(a-2b\right)^2=0\\\left(a-3\right)^2=0\\\left(2b-3\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-2b=0\\a-3=0\\2b-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2b\\a=3\\b=\frac{3}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=3\\b=\frac{3}{2}\end{matrix}\right.\)
a, \(\left(a^2+b^2-2ab+2a-2b+1\right)+\left(b^2-2b+1\right)=0\)
=> \(\left(a-b+1\right)^2+\left(b-1\right)^2=0\)
Mà \(\left(a-b+1\right)^2\ge0,\left(b-1\right)^2\ge0\)
=> \(\hept{\begin{cases}a-b+1=0\\b=1\end{cases}\Rightarrow\hept{\begin{cases}a=0\\b=1\end{cases}}}\)
b,Tương tự
\(\left(a-2b+1\right)^2+\left(b-1\right)^2=0\)
=>\(\hept{\begin{cases}a=1\\b=1\end{cases}}\)
Ta có:
\(2\left(a^2+b^2\right)=5ab\)
\(\Leftrightarrow2a^2-5ab+2b^2=0\)
\(\Leftrightarrow2a^2-4ab-ab+2b^2=0\)
\(\Leftrightarrow2a\left(a-2b\right)-b\left(a-2b\right)=0\)
\(\Leftrightarrow\left(2a-b\right)\left(a-2b\right)=0\)
\(\Leftrightarrow a=2b\) hay \(b=2a\)
Vì \(a>b>c\Leftrightarrow a=2b\)
\(\Leftrightarrow\frac{3a-b}{2a+b}=\frac{3.2b-b}{2.2b+b}=\frac{5b}{5b}=1\)
Vậy \(\frac{3a-b}{2a+b}=1\)
Ta có:
6a = 4b = 3c
=> \(\dfrac{6a}{12}=\dfrac{4b}{12}=\dfrac{3c}{12}\)
=> \(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\)
=> \(\dfrac{a^2}{4}=\dfrac{b^2}{9}=\dfrac{c^2}{16}\)
Đặt \(\dfrac{a^2}{4}=\dfrac{b^2}{9}=\dfrac{c^2}{16}\)= k
=>\(\left\{{}\begin{matrix}a^2=4k\\b^2=9k\\c^2=16k\end{matrix}\right.\)
Thay \(\left\{{}\begin{matrix}a^2=4k\\b^2=9k\\c^2=16k\end{matrix}\right.\)vào biểu thức N ta được:
N = \(\dfrac{3a^2+6b^2-5c^2}{2a^2-4b^2+3c^2}\)
N = \(\dfrac{3.4k+6.9k-5.16k}{2.4k-4.9k+3.16k}\)
N = \(\dfrac{12k+54k-80k}{8k-36k+48k}\)
N = \(\dfrac{-14k}{20k}\)
N = \(\dfrac{-7}{10}\)
\(\dfrac{3a+4b}{5a-6b}=\dfrac{3c+4d}{5c-6d}\)
=> \(\dfrac{3a+4b}{3c+4d}=\dfrac{5a-6b}{5c-6d}\)
ta có
\(\dfrac{3a+4b}{3c+4d}=\dfrac{3a}{3c}=\dfrac{4b}{4d}=\dfrac{a}{c}=\dfrac{b}{d}=>\dfrac{a}{b}=\dfrac{c}{d}\)(đpcm)
Ta có:
\(\dfrac{3a+4b}{5a-6b}=\dfrac{3c+4d}{5c-6d}\)
\(\Leftrightarrow\left(3a+4b\right)\left(5c-6d\right)=\left(3c+4d\right)\left(5a-6b\right)\)
\(\Rightarrow15ac-18ad+20bc-24bd=15ac-18bc+20ad-24bd\)
\(\Rightarrow15ac-15ac-18ad-20ad=-24bd+24bd-18bc-20bc\)
\(\Rightarrow-38ad=-38bc\)
\(\Rightarrow ad=bc\)
\(\Rightarrow\dfrac{a}{b}=\dfrac{c}{d}\)
a; \(\sqrt{27a}\cdot\sqrt{3a}=\sqrt{81a^2}=9a\)
b: \(\dfrac{\sqrt{8a^4b^6}}{\sqrt{64a^6b^6}}=\sqrt{\dfrac{1}{8a^2}}=\sqrt{\dfrac{2}{16a^2}}=\dfrac{-\sqrt{2}}{4a}\)(do a<0)