K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2020

Ta có: \(a^2+4b^2+4ab+2a+1=0\)

<=> \(\left(a^2+4b^2+4ab\right)+\left(2a+4b\right)+1=4b\)

<=> \(\left(a+2b\right)^2+2\left(a+2b\right)+1=4b\)

<=> \(\left(a+2b+1\right)^2=4b\)

=> 4b là số chính phương mà b là số tự nhiên và 4 là số chính phương => b là số chính phương

22 tháng 7 2021

4a2 + 9b2 - 20a + 6b + 26 = 0 <=> ( 2a - 5 )2 + ( 3b + 1 )2 = 0 <=> a = 5/2 ; b = -1/3

5a2 + b2 - 2a + 4ab + 1 = 0 <=> ( 2a + b )2 + ( a - 1 )2 = 0 <=> a = 1 ; b = -2

22 tháng 7 2021

1) Ta có 4a2 + 9b2 - 20a + 6b + 26 = 0

<=> (4a2 - 20a + 25) + (9b2 + 6b + 1) = 0

<=> (2a - 5)2 + (3b + 1)2 = 0

<=> \(\hept{\begin{cases}2a-5=0\\3b+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=\frac{5}{2}\\b=-\frac{1}{3}\end{cases}}\)

Vậy a = 5/2 ; b = -1/3

2) Ta có 5a2 + b2 - 2a + 4ab + 1 = 0

<=> (4a2 + 4ab + b2) + (a2 - 2a + 1) = 0

<=> (2a + b)2 + (a - 1)2 = 0

<=> \(\hept{\begin{cases}2a+b=0\\a-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}b=-2\\a=1\end{cases}}\)

Vậy b = -2 ;  a = 1

2 tháng 11 2017

2a2b+4ab2-a2c+ac2-4b2c+2bc2-4abc

=2ab(a+2b)-ac(a+2b)+c2(a+2b)-2bc(a+2b)

=(a+2b)(2ab-ac+c2-2bc)

=(a+2b)\(\left[a\left(2b-c\right)-c\left(2b-c\right)\right]\)

=(a+2b)(2b-c)(a-c)

21 tháng 7 2016

<=>a^2-2a+b^2+4b+4c^2-4c+1+4+1=0

<=>(a^2-2a+1)+(b^2+4b+4)+(4c^2-4c+1)=0

<=>(a-1)2+(b+2)2+(2c-1)2=0

<=>(a-1)^2=0 hoặc(b+2)^2=0 hoặc (2c-1)^2=0

+,(a-1)^2=0<=>a-1=0<=>a=1

+,(b+2)^2=0<=>b+2=0<=>b=-2

+,(2c-1)^2=0<=>2c-1=0<=>2c=1<=>c=1/2

19 tháng 7 2016

\(a^2-2a+b^2+4b+4c^2-4c+6=0\)

\(=>\left(a^2-2a+1\right)+\left(b^2+4b+4\right)+\left(4c^2-4c+1\right)=0\)

\(=>\left(a^2-2.a.1+1^2\right)+\left(b^2+2.b.2+2^2\right)+\left[\left(2c\right)^2-2.2c.1+1^2\right]=0\)

\(=>\left(a-1\right)^2+\left(b+2\right)^2+\left(2c-1\right)^2=0\left(1\right)\)

Vì : \(\left(a-1\right)^2\ge0\) với mọi a

\(\left(b+2\right)^2\ge0\) với mọi b

\(\left(2c-1\right)^2\ge0\) với mọi c

=>\(\left(a-1\right)^2+\left(b+2\right)^2+\left(2c-1\right)^2\ge0\) với mọi a,b,c

Để (1) thì \(\left(a-1\right)^2=\left(b+2\right)^2=\left(2c-1\right)^2=0=>a=1;b=-2;c=\frac{1}{2}\)

Vậy........

26 tháng 6 2016

\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2+4b+4\right)+\left(4c^2-4c+1\right)=0\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b+1\right)^2+\left(2c-1\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}a-1=0\\b+1=0\\2c-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=-1\\c=\frac{1}{2}\end{cases}}\)

27 tháng 8 2021

bạn vừa đăng câu này rồi mà

27 tháng 8 2021

Mình cần áp dụng hằng đẳng thức bạn giúp mình nhé