\(^{x^4+ax^2+b+1}\)chia hết cho\(^{x^2+x+1}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2017

Ta có: 

\(x^4+ax^2+b+1=\left(x^2+x+1\right)\left(x^2-x+a\right)+x\left(1-a\right)+b-a+1\)

Để nó là phép chia hết thì:

\(\hept{\begin{cases}1-a=0\\b-a+1=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=1\\b=0\end{cases}}\)

10 tháng 12 2016

\(\hept{\begin{cases}f\left(-2\right)=0\\f\left(-1\right)=-1+5\\f\left(1\right)=1+5\end{cases}\Leftrightarrow\hept{\begin{cases}-8a+4b+c=0\\-a+b+c=4\\a+b+c=6\end{cases}\Leftrightarrow}\hept{\begin{cases}a=1\\b+c=5\\4b+c=8\end{cases}\hept{\begin{cases}a=1\\b=1\\c=4\end{cases}.}}}..\)

29 tháng 10 2016

2/ Ta phân tích

ax3 + bx2 + c = (x + 2)[a​x2 + (b - 2a)x - 2(b - 2a)] + c + 4(b - 2a) = (x2 - 1)(ax + b) + ax + b + c

Từ đó kết hợp với đề bài ta có hệ

\(\hept{\begin{cases}c+4\left(b-2a\right)=0\\a=1\\b+c=5\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=1\\b=1\\c=4\end{cases}}\)

29 tháng 10 2016

Ta có A = (x + y)3 + z3 + kxyz - 3xy(x + y)

= (x + y + z)[(x + y)2 - (x + y)z + z2] + xy(kz - 3x - 3y)

Nhìn vào cái này ta dễ thấy là để A chia hết cho x + y + z thì k = - 3

17 tháng 8 2017

tách f(x) rồi còn thừa thiếu bao nhiêu dùng hệ số bất định là ra ngay ấy mà

5 tháng 12 2016

Gọi đa thức f(x) = ax3 + bx2 + c

g(x) = ax3 + bx2 - x + c - 5

Ta có f(x) chia hết cho x + 2 nên khi thay x = - 2 thì f(x) = 0

<=> - 8a + 4b + c = 0 (1)

g(x) chia hết cho x2 - 1 hay chia hết cho x + 1 và x - 1

Từ đó ta có

 - a + b + c - 4 = 0 và a + b + c - 6 = 0

Từ đây ta có hệ phương trình bật nhất 3 ẩn. 

Bạn tự giải phần còn lại nhé

17 tháng 6 2017

Đặt f(x) = \(2x^4+ax^2+bx+c\)

Áp dụng định lí Be - du ta có: r = f(x)

=> \(\left\{{}\begin{matrix}r=f\left(2\right)\\r=f\left(1\right)\\r=f\left(-1\right)\end{matrix}\right.\)

Thay x = 2; 1; -1 lần lượt vào f(x) ta được:

\(\left\{{}\begin{matrix}f\left(2\right)=32+4a+2b+c\\f\left(1\right)=2+a+b+c\\f\left(-1\right)=2+a-b+c\end{matrix}\right.\)

\(\left\{{}\begin{matrix}f\left(x\right)⋮\left(x-2\right)\\f\left(x\right)chia\left(x^2-1\right)dư2x\end{matrix}\right.\) => \(\left\{{}\begin{matrix}32+4a+2b+c=0\\2+a+b+c=2\\2+a-b+c=-2\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}4a+2b+c=-32\left(1\right)\\a+b+c=0\left(2\right)\\a-b+c=-4\left(3\right)\end{matrix}\right.\)

Trừ (2) cho (3) ta được: \(2b=4\) => b = 2

=> \(\left\{{}\begin{matrix}4a+c=-36\left(4\right)\\a+c=-2\left(5\right)\end{matrix}\right.\)

Trừ (4) cho (5) ta được: \(3a=-34\) => a = \(\dfrac{-34}{3}\) => c = \(\dfrac{28}{3}\)

Vậy a = \(\dfrac{-34}{3}\) ; b = 2 ; c = \(\dfrac{28}{3}\)

P/s: Hi vọng bn hiểu!

17 tháng 6 2017

c.ơn bn nh`

14 tháng 3 2018

Xét :

x^4 - 3x^3 + ax + b

= (x^4-3x^3+x^2)-(x^2-3x+1) +ax+b - 3x + 1

= (x^2-3x+1).(x^2-1) + (a-3).x + (b+1)

=> để x^4-3x^3+ax+b chia hết cho x^2-3x+1 thì :

a-3=0 và b+1=0

<=> a=3 và b=-1

Vậy ...........

Tk mk nha

23 tháng 11 2017

deo biet