Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1: (a;b)= {(0;1); (1;0); (2;2); (1;3); (3;1); (4;3); (3;4); (5;5); (7;3); (3;7); (2;5); (5;2); (1;6); (6;1); (9;1); (1;9); (4;6); (6;4); (2;8); (8;2); (6;7); (7;6); (8;5); (5;8); (9;4); (4;9); (9;7); (7;9); (8;8)}
Bài 4:
M chia 2 dư 1
=>y chia 2 dư 1
mà 0<=y<=9
nên \(y\in\left\{1;3;5;7;9\right\}\left(9\right)\)
M chia 5 dư 3
=>y chia 5 dư 3
mà 0<=y<=9
nên \(y\in\left\{3;8\right\}\left(10\right)\)
Từ (9) và (10) suy ra y=3
=>\(M=\overline{6x523}\)
M chia hết cho 9
=>\(6+x+5+2+3⋮9\)
=>\(x+16⋮9\)
mà 0<=x<=9
nên x=2
Vậy: Số cần tìm là M=62523
Bài 1:
a: \(\overline{735x}⋮2\)
=>\(x⋮2\)
=>\(x\in\left\{0;2;4;6;8\right\}\left(1\right)\)
\(\overline{735x}\) chia 5 dư 3
=>x chia 5 dư 3
=>\(x\in\left\{3;8\right\}\left(2\right)\)
Từ (1) và (2) suy ra x=8
b: \(\overline{735x}\) chia 2 dư 1
=>x lẻ
mà 0<=x<=9
nên \(x\in\left\{1;3;5;7;9\right\}\left(3\right)\)
\(\overline{735x}\) chia 5 dư 4
=>x chia 5 dư 4
mà 0<=x<=9
nên \(x\in\left\{4;9\right\}\left(4\right)\)
Từ (3) và (4) suy ra x=9
Bài 2:
Đặt \(A=\overline{4x73y}\)
A chia cho 2 du1
=>y lẻ
mà 0<=y<=9
nên \(y\in\left\{1;3;5;7;9\right\}\left(5\right)\)
A chia 5 dư 1
=>y chia 5 dư 1
mà 0<=y<=9
nên \(y\in\left\{1;6\right\}\left(6\right)\)
Từ (5) và (6) suy ra y=1
=>\(A=\overline{4x731}\)
A chia hết cho 9
=>4+x+7+3+1 chia hết cho 9
=>x+14 chia hết cho 9
mà 0<=x<=9
nên x=4
Vậy: Số cần tìm là 44731
Bài 3:
Đặt \(B=\overline{4x73y}\)
B chia 2 dư 1
=>y chia 2 dư 1
mà 0<=y<=9
nên \(y\in\left\{1;3;5;7;9\right\}\)(7)
B chia 5 dư 3
=>y chia 5 dư 3
mà 0<=y<=9
nên \(y\in\left\{3;8\right\}\left(8\right)\)
Từ (7) và (8) suy ra y=3
=>\(B=\overline{4x733}\)
B chia 9 dư 4
=>4+x+7+3+3 chia 9 dư 4
=>x+13 chia hết cho 9
mà 0<=x<=9
nên x=5
Vậy: Số cần tìm là 45733
số chia cho 2 và 5 đều dư 1 nên số cần tìm tận cùng là 1.
số chia cho 9 dư 1 mà tận cùng phải là 1, nên số đó là 91
a) gọi số cần tìm là a
a -1 chia hết cho (2,3,5)
=> a-1 e BC(2,3,5)
a bé nhất
=> a-1 e BCNN(2,3,5)
BCNN(2,3,5)=30
a-1=30
=> a=31
b)gọi số cần tìm là a
a-2 chia hết cho (3,4,5)
a nhỏ nhất
=> a-2 e BCNN(3,4,5)
BCNN(3,4,5)= 60
a-2= 60
=> a=62
Ta có : 3a65b chia hết cho 5
Thì b chỉ có thể bằng 0;5
Th1: b = 0 thì (3 + a + 6 + 5 + 0) chia hết cho 9
=> (14 + a) chia hết cho 9
=> a = 4
Th2: b =5 thì (3 + a + 6 + 5 + 5) chia hết cho 9
=> 19 + a chia hết cho 9
=> a = 8
Để M chia cho 2 dư 1 thì b là các số: \(1;3;5;7;9\)
Để M chia cho 5 dư 2 thì b là các số: \(2;7\)
--> b là số 7
Khi đó \(M=a17417\)
Tổng các số của \(M=a+1+7+4+1+7=a+20\)
M chia hết 9 dư 3 --> \(M=21\)
--> \(a=1\)
\(\rightarrow M=171417\)