K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2020

a) Mình không rảnh đặt phép chia, hệ số bất định vậy.

Giả sử khi A chia hết cho B thì sẽ được thương là x+c

\(\Rightarrow A=B\left(x+c\right)\)

\(\Leftrightarrow x^3+ax^2+2x+b=\left(x^2+2x+3\right)\left(x+c\right)\)

\(\Leftrightarrow x^3+ax^2+2x+b=x^3+\left(2+c\right)x^2+\left(3+2c\right)x+3c\)

\(\Leftrightarrow\hept{\begin{cases}a=2+c\\2=3+2c\\b=3c\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a=\frac{3}{2}\\b=\frac{-3}{2}\\c=\frac{-1}{2}\end{cases}}\)

KL: \(a=\frac{3}{2};b=\frac{-3}{2}\)

b) Giải tương tự.

3 tháng 11 2019

x^2+5 x^4+2x^3+10x+a x^2+2x-5 x^4+5x^2 2x^3-5x^2+10x+a 2x^3 +10x -5x^2+a -5x^2-25 a+25

Để  x4+2x3+10x+a chia hết cho đa thức x2+5 thì

\(a+25=0\Leftrightarrow a=-25\)

3 tháng 11 2019

Đa thức \(x^2-1\)có nghiệm \(\Leftrightarrow x^2-1=0\)

\(\Leftrightarrow x^2=1\Leftrightarrow x=\pm1\)

-1 và 1 là hai nghiệm của đa thức \(x^2-1\)

Để đa thức \(2x^3-x^2+ax+b\)chia hết cho đa thức \(x^2-1\)thì -1 và 1 cũng là hai nghiệm của đa thức \(2x^3-x^2+ax+b\)

Nếu x = -1 thì \(-2-1-a+b=0\Leftrightarrow a-b=-3\)(1)

Nếu x = 1 thì \(2-1+a+b=0\Leftrightarrow a+b=-1\)(2)

Từ (1) và (2) suy ra \(\hept{\begin{cases}a=\frac{-3-1}{2}=-2\\b=\frac{-1+3}{2}=1\end{cases}}\)

Vậy a = -2, b = 1

14 tháng 11 2022

a: \(\Leftrightarrow x^3+2x^2-3x^2-6x+5x+10+a-10⋮x+2\)

=>a-10=0

=>a=10

b: \(\Leftrightarrow x^3+x^2+x+\left(a-1\right)x^2+\left(a-1\right)x+a-1+\left(2-a\right)x+b-a+1⋮x^2+x+1\)

=>2-a=0 và b-a+1=0

=>a=2; b=a-1=2-1=1

19 tháng 8 2018

\(\left(x^3+ax^2+2x+b\right)=\left(x^2+x+1\right)\left(cx+d\right).\)

\(x^3+ax^2+2x+b=cx^3+x^2\left(c+d\right)+x\left(c+d\right)+d\)

Đồng nhất 2 vế có

\(x^3=cx^3\Rightarrow c=1\)

\(2x=x\left(c+d\right)\Leftrightarrow2x=x\left(1+d\right)\Rightarrow d=1\)

\(ax^2=x^2\left(c+d\right)\Rightarrow a=2\)

\(b=d\Rightarrow b=1\)

2/ Câu B tương tự nha bạn

19 tháng 8 2018

MK làm theo phương pháp hệ số bất định

a, Vì số bị chia có bậc 3 mà số chia có bậc 2 nên thương sẽ có bậc 1

Hệ số của thương là : x3:x2=x

Gọi đa thức thương là : x + c

\(x^3+ax^2+2x+b=\left(x^2+x+1\right).\left(x+c\right)\)

\(\Rightarrow x^3+ax^2+2x+b=x^3+x^2c+x^2+cx+x+c\)

\(\Rightarrow x^3+ax^2+2x+b=x^3+x^2\left(c+1\right)+x\left(c+1\right)+c\)

Theo pp hệ số bất định

\(\Rightarrow\hept{\begin{cases}a=c+1\\2=c+1\\b=c\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}a=2\\c=2-1=1\\b=c=1\end{cases}}\)

Vậy a = 2 ; b = 1

Câu b tương tự nhé