[a;a+12] \(\subset\) (−∞;5) ∪...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2016

a.Gọi E là trung điểm AC ; F là trung điểm BC

\(\overrightarrow{MA}+2\overrightarrow{MB}+3\overrightarrow{MC}=\overrightarrow{0}\)

\(\Leftrightarrow\left(\overrightarrow{MA}+\overrightarrow{MC}\right)+2\left(\overrightarrow{MB}+\overrightarrow{MC}\right)=\overrightarrow{0}\)

\(\Leftrightarrow2\overrightarrow{ME}+4\overrightarrow{MF}=\overrightarrow{0}\)

\(\Leftrightarrow\overrightarrow{ME}+2\overrightarrow{MF}=\overrightarrow{0}\)

Điểm M nằm trên đoạn EF sao cho \(\frac{MF}{ME}=\frac{1}{2}\)

 

28 tháng 7 2016

đề bài có phải là 

a. \(\overrightarrow{MA}+2\overrightarrow{MB}+3\overrightarrow{MC}=\overrightarrow{0}\)

b. \(\overrightarrow{MA}+2\overrightarrow{MB}-4\overrightarrow{MC}=\overrightarrow{0}\)

AH
Akai Haruma
Giáo viên
10 tháng 3 2018

Lời giải:

Áp dụng BĐT AM-GM ta có:

\(x^2+y^3\geq x^3+y^4\)

\(\Rightarrow x^2+y^3+y^2\geq x^3+y^4+y^2\geq x^3+2\sqrt{y^6}\)

\(\Leftrightarrow x^2+y^3+y^2\geq x^3+2y^3\Leftrightarrow x^2+y^2\geq x^3+y^3(1)\)

Áp dụng BĐT Bunhiacopxky:

\((x^3+y^3)(x+y)\geq (x^2+y^2)^2(2)\)

Từ \((1); (2)\Rightarrow (x^2+y^2)(x+y)\geq (x^3+y^3)(x+y)\geq (x^2+y^2)^2\)

\(\Leftrightarrow x+y\geq x^2+y^2(3)\)

Theo Bunhiacopxky: \((x^2+y^2)(1+1)\geq (x+y)^2(4)\)

Từ \((3); (4)\Rightarrow x+y\geq \frac{(x+y)^2}{2}\Rightarrow x+y\leq 2\)

Do đó: \(x^3+y^3\leq x^2+y^2\leq x+y\leq 2\Rightarrow \) đpcm.

Dấu bằng xảy ra khi $x=y=1$

17 tháng 10 2019

8/ Giả sử N(xN;yN)

Cách 1:\(\overrightarrow{BA}=\left(-2;6\right);\overrightarrow{CN}=\left(x_N-3;y_n-4\right)\)

vì tứ giác ABCN là hbh

=> \(\overrightarrow{BA}=\overrightarrow{CN}\Rightarrow\left\{{}\begin{matrix}x_N-3=-2\\y_N-4=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_N=1\\y_N=10\end{matrix}\right.\)

=> N(1;10)

Cách 2:

\(\overrightarrow{AN}=\left(x_N+1;y_N-4\right);\overrightarrow{BC}=\left(2;6\right)\)

ABCN là hbh => \(\overrightarrow{AN}=\overrightarrow{BC}\)

\(\Rightarrow\left\{{}\begin{matrix}x_N+1=2\\y_N-4=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_N=1\\y_N=10\end{matrix}\right.\)

vậy....

9/ giả sử I(xI;yI)

\(\overrightarrow{IA}=\left(-1-x_I;4-y_I\right)\)

\(\overrightarrow{IB}=\left(1-x_I;-2-y_I\right)\Rightarrow2\overrightarrow{IB}=\left(2-2x_I;-4-2y_I\right)\)

\(\overrightarrow{IA}+2\overrightarrow{IB}=\overrightarrow{0}\)

=> \(\left\{{}\begin{matrix}-1-x_I+2-2x_I=0\\4-y_I-4-2y_I=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_I=\frac{1}{3}\\y_I=0\end{matrix}\right.\)

vậy.......

10/ xác đinh vt JA;vt 2JB; vt -4JC rồi thay vào

17 tháng 10 2019

6/

Giả sử: E(xE;0) (E thuộc Ox)

A,B,E thẳng hàng => tồn tại số thực k(k khác 0) để \(\overrightarrow{AE}=k\cdot\overrightarrow{AB}\)

Ta có: \(\overrightarrow{AE}=\left(x_E+1;-4\right)\)

\(\overrightarrow{AB}=\left(2;-6\right)\Rightarrow k\cdot\overrightarrow{AB}=\left(2k;-6k\right)\)

\(\Rightarrow\left\{{}\begin{matrix}x_E+1=2k\\-4=-6k\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{1}{3}\\k=\frac{2}{3}\end{matrix}\right.\)

Vậy E(\(\frac{1}{3};0\)) thoả mãn \(\overrightarrow{AE}=\frac{2}{3}\overrightarrow{AB}\) để 3 điểm A,B,E thẳng hàng

7/ F thuộc Oy, giải sử F(0;yF)

làm tương tự (6)

NV
20 tháng 9 2019

Đáp án đúng là D

20 tháng 9 2019

Thank you

31 tháng 8 2020

\(A=\left\{0,1,2,3\right\}\)

vì \(\hept{\begin{cases}X\subset A\\X\subset B\end{cases}}\)nên \(X=\left\{a\in R|a\ge0\right\}\)