K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2017

a, Ta có :

\(5a+2⋮a+2\)

\(a+2⋮a+2\)

\(\Leftrightarrow\left\{{}\begin{matrix}5a+2⋮a+2\\5a+10⋮a+2\end{matrix}\right.\)

\(\Leftrightarrow8⋮a+2\)

\(a\in N\Leftrightarrow a+2\in N;a+2\inƯ\left(8\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}a+2=1\\a+2=8\\a+2=4\\a+2=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}a=-1\left(loại\right)\\a=10\\a=2\\a=0\end{matrix}\right.\)

Vậy ..........

b, tương tự

5 tháng 9 2017

a, Ta có:

\(\dfrac{5a+2}{a+2}=\dfrac{5a+10-8}{a+2}=5-\dfrac{8}{a+2}\)

Để \(5a+2\) chia hết cho \(a+2\) thì

\(8\) phải chia hết cho \(a+2\)

\(\Rightarrow a+2\inƯ\left(8\right)\)

\(\Rightarrow a+2\in\left\{-8;-4;-2;-1;1;2;4;8\right\}\)

\(\Rightarrow a\in\left\{-10;-6;-4;-3;-1;0;2;6\right\}\)

Vậy..................

b, Đề kiểu gì vậy!

3 tháng 12 2016

a, n=1,3,5,7,9

b, n=2,7

c, n=?

d,n=7

1 tháng 2 2017

(18a-5b).(27a+b) chia hết cho 17

Mà 17 là số nguyên tố nên trong 2 số 18a-5b và 27a+b có ít nhất 1 số chia hết cho 17

Xét hiệu: 5.(27a+b)+(18a-5b)

= 135a+5b+18a-5b

= 153a chia hết cho 17 (*)

+ Nếu 27a+b chia hết cho 17 từ (*) dễ dàng => 18a-5b chia hết cho 17

=> (27a+b)(18a-5b) chia hết cho 17.17 = 289

+ Nếu 18a-5b chia hết cho 17, từ (*) => 5.(27a+b) chia hết cho 17

Mà (5;17)=1 nên 27a+b chia hết cho 17

Do đó, (18a-5b)(27a+b) chia hết cho 17.17 = 289

Vậy ta có đpcm

1 tháng 2 2017

Vì 289 chia hết cho 17

Suy ra:(18a-5b)(27a+b)

26 tháng 6 2016

a)4x-3 chia hết cho x-2

4x-8+5 chia hết cho x-2

(4x-8)+5 chia hết cho x-2

4(x-2)+5 chia hết cho x-2 <=> 5 chia hết cho x-2 [vì 4(x-2) luôn chia hết cho x-2]

 x-2 E {1;-1;5;-5}

Nếu x-2=1          Nếu x-2=-1            Nếu x-2=5          Nếu x-2=-5

       x=1+2=3            x=-1+2=1             x=5+2=7             x=-5+2=-3

15 tháng 3 2016

a) \(7^6+7^5-7^4=7^4.\left(7^2+7-1\right)=7^4.\left(49+7-1\right)=7^4.55\)

Ta có: 55 chia hết cho 11 

Nên \(7^4.55\)chia hết cho 11

Hay \(7^6+7^5-7^4\)chia hết cho 11

Câu b,c làm tương tự

8 tháng 6 2016

Câu 1.

Tìm a,b để \(x^3+ax+b\)chia \(x+1\)dư 7 và chia cho \(x-3\)dư -5.

  • Thương của phép chia đa thức bậc 3 \(x^3+ax+b\)cho \(x+1\)là 1 đa thức bậc 2 có hệ số bậc 2 bằng 1, tổng quát ở dạng: \(x^2+mx+n\).
  • Số dư của phép chia này là 7 nên ta có:

\(x^3+ax+b=\left(x+1\right)\left(x^2+mx+n\right)+7\mid\forall x\in R\)

\(\Leftrightarrow x^3+ax+b=x^3+\left(m+1\right)x^2+\left(m+n\right)x+n+7\mid\forall x\in R\)

Để 2 đa thức này bằng nhau với mọi x thuộc R thì hệ số các bậc phải bằng nhau. Đồng nhất chúng ta có:

\(\hept{\begin{cases}m+1=0\\m+n=a\\n+7=b\end{cases}\Rightarrow\hept{\begin{cases}m=-1\\n=a+1\\b=a+1+7\end{cases}\Rightarrow}b=a+8\mid\left(1\right)}\)

  • Tương tự với phép chia \(x^3+ax+b\)cho \(x-3\)dư -5.

\(x^3+ax+b=\left(x-3\right)\left(x^2+px+q\right)-5\mid\forall x\in R\)

\(\Leftrightarrow x^3+ax+b=x^3+\left(p-3\right)x^2+\left(q-3p\right)x-\left(3q+5\right)\mid\forall x\in R\)

\(\Rightarrow\hept{\begin{cases}p-3=0\\q-3p=a\\-\left(3q+5\right)=b\end{cases}\Rightarrow\hept{\begin{cases}p=3\\q=a+9\\b=-\left(3\left(a+9\right)+5\right)\end{cases}\Rightarrow}b=-3a-32\mid\left(2\right)}\)

  • Từ (1) và (2) ta có:

\(\hept{\begin{cases}b=a+8\\b=-3a-32\end{cases}\Rightarrow a+8=-3a-32\Rightarrow\hept{\begin{cases}a=-10\\b=-2\end{cases}}}\)

  • Vậy với \(a=-10;b=-2\)thì đa thức đã cho trở thành  \(x^3-10x-2\)chia cho \(x+1\)dư 7 và chia cho \(x-3\)dư -5.
  • Viết kết quả các phép chia này ta được:

\(\hept{\begin{cases}x^3-10x-2=\left(x+1\right)\left(x^2-x-9\right)+7\\x^3-10x-2=\left(x-3\right)\left(x^2+3x-1\right)-5\end{cases}\mid\forall x\in R}\)

15 tháng 1 2018

Bài 1:

Xét hiệu: 6(x+7y) - 6x+11y = 6x+42y-6x+11y = 31y 

Vì 6x+11y chia hết cho 31, 31y chia hết cho 31

=> 6(x+7y) chia hết cho 31

Mà (6;31)=1 => x+7y chia hết cho 31

Bài 3:

a,n2+3n-13 chia hết cho n+3

=>n(n+3)-13 chia hết cho n+3

=>13 chia hết cho n+3

=>n+3 E Ư(13)={1;-1;13;-13}

=>n E {-2;-4;10;-16}

d,n2+3 chia hết cho n-1

=>n2-n+n-1+4 chia hết cho n-1

=>n(n-1)+(n-1)+4 chia hết cho n-1

=>4 chia hết cho n-1

=>n-1 E Ư(4)={1;-1;2;-2;4;-4}

=>n E {2;0;3;-1;5;-3}

2 tháng 9 2020

a) Gọi ƯCLN(a ; b) = d

=> \(\hept{\begin{cases}a⋮d\\b⋮d\end{cases}}\Rightarrow\hept{\begin{cases}a^2⋮d\\b^2⋮d\end{cases}}\Rightarrow a^2+b^2⋮d\)

mà theo đề ra \(a^2+b^2⋮3\)

=> \(d⋮3\)

Mà \(\hept{\begin{cases}a⋮d\\b⋮d\end{cases}}\Rightarrow\hept{\begin{cases}a⋮3\\b⋮3\end{cases}}\)

b) Gọi ƯCLN(a ; b) = d

=> \(\hept{\begin{cases}a⋮d\\b⋮d\end{cases}}\Rightarrow\hept{\begin{cases}a^2⋮d\\b^2⋮d\end{cases}}\Rightarrow a^2+b^2⋮d\)

mà theo đề ra \(a^2+b^2⋮7\)

=> \(d⋮7\)

Mà \(\hept{\begin{cases}a⋮d\\b⋮d\end{cases}}\Rightarrow\hept{\begin{cases}a⋮7\\b⋮7\end{cases}}\)

9 tháng 6 2017

chia hết cho con cờ