
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


1
a) x^2+2x-5 b) x^2+x+7 9 (dư 8)
2
x=2; x = -(3*căn bậc hai(7)*i+1)/2;x = (3*căn bậc hai(7)*i-1)/2;
3
a=2

a: \(\frac{A}{B}=\frac{x^2y^4+2x^3y^{n}}{x^{n}y^2}=x^{2-n}\cdot y^2+2\cdot x^{3-n}\cdot y^{n-2}\)
Để A chia hết cho B thì \(\begin{cases}2-n\ge0\\ 3-n\ge0\\ n-2\ge0\end{cases}\Rightarrow\begin{cases}n\le2\\ n\le3\\ n\ge2\end{cases}\Rightarrow\begin{cases}n\le2\\ n\ge2\end{cases}\)
=>n=2
b: \(\frac{A}{B}=\frac{5x^8y^4-9x^{2n}y^6}{-x^7y^{n}}=-5xy^{4-n}+9x^{2n-7}y^{6-n}\)
Để A chia hết cho B thì \(\begin{cases}4-n\ge0\\ 2n-7\ge0\\ 6-n\ge0\end{cases}\Rightarrow\begin{cases}n\le4\\ n\ge\frac72\\ n\le6\end{cases}\Rightarrow\frac72\le n\le4\)
mà n là số tự nhiên
nên n=4
c: \(\frac{A}{B}=\frac{12x^8y^{2n}+25x^{12}y^5z^2}{4x^{3n}y^4}=3x^{8-3n}y^{2n-4}+\frac{25}{4}x^{12-3n}yz^2\)
Để A chia hết cho B thì \(\begin{cases}8-3n\ge0\\ 2n-4\ge0\\ 12-3n\ge0\end{cases}\Rightarrow\begin{cases}3n\le8\\ n\ge2\\ 3n\le12\end{cases}\)
=>\(2\le n\le\frac83\)
mà n là số tự nhiên
nên n=2
d: \(\frac{A}{B}=\frac{-13x^{17}y^{2n-3}+22x^{16}y^7}{-7x^{3n+1}y^6}=\frac{13}{7}x^{17-3n-1}y^{2n-3-6}-\frac{22}{7}x^{16-3n-1}y\)
\(=\frac{13}{7}\cdot x^{16-3n}y^{2n-9}-\frac{22}{7}x^{15-3n}y\)
Để A chia hết cho B thì \(\begin{cases}16-3n\ge0\\ 2n-9\ge0\\ 15-3n\ge0\end{cases}\Rightarrow\begin{cases}3n\le16\\ 2n\ge9\\ 3n\le15\end{cases}=>\begin{cases}n<=\frac{16}{3}\\ n\ge\frac92\\ n\le5\end{cases}\)
=>\(\frac92\le n\le5\)
mà n là số tự nhiên
nên n=5
e: \(\frac{A}{B}=\frac{20x^5y^{2n}-10x^4y^{3n}+15x^5y^6}{3x^2y^{n+1}}\)
\(=\frac{20}{3}\cdot x^{5-2}\cdot y^{2n-n-1}-\frac{10}{3}\cdot x^{4-2}\cdot y^{3n-n-1}+5x^3y^{6-n-1}\)
\(=\frac{20}{3}\cdot x^3\cdot y^{n-1}-\frac{10}{3}x^2y^{2n-1}+5x^3y^{6-n}\)
Để A chia hết cho B thì \(\begin{cases}n-1\ge0\\ 2n-1\ge0\\ 6-n\ge0\end{cases}\Rightarrow\begin{cases}n\ge1\\ n\ge\frac12\\ n\le6\end{cases}\Rightarrow1\le n\le6\)
mà n là số tự nhiên
nên n∈{1;2;3;4;5;6}

Bài 1 :
\(a)\)\(A=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)
\(A=\left(x^2+6x-x-6\right)\left(x^2+3x+2x+6\right)\)
\(A=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
\(A=\left(x^2+5x\right)^2-36\ge-36\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(x^2+5x\right)^2=0\)\(\Leftrightarrow\)\(x\left(x+5\right)=0\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)
Vậy GTNN của \(A\) là \(-36\) khi \(x=0\) hoặc \(x=-5\)
\(b)\)\(B=x^2-4x+y^2-8y+6\)
\(B=\left(x^2-4x+4\right)+\left(y^2-8y+16\right)-14\)
\(B=\left(x-2\right)^2+\left(y-4\right)^2-14\ge-14\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\left(x-2\right)^2=0\\\left(y-4\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=4\end{cases}}}\)
Vậy GTNN của \(B\) là \(-14\) khi \(x=2\) và \(y=4\)
Chúc bạn học tốt ~
Bài 2 :
\(a)\)\(0\le n\le5\)
\(b)\)\(n\ge2\)
\(c)\)\(\hept{\begin{cases}n\ge2\\n+1\ge5\end{cases}\Leftrightarrow\hept{\begin{cases}n\ge2\\n\ge4\end{cases}\Leftrightarrow}n\ge4}\)
\(d)\)\(\hept{\begin{cases}0\le n\le3\\0\le n\le2\\0\le n\le1\end{cases}\Leftrightarrow0\le n\le1}\)
Chúc bạn học tốt ~

1-4x-2x^2=3-2(x^2+2x+1)=3-(x+1)^2 nhỏ hơn hoặc bằng 3. max(....)=3 khi x=-1
Ta có:
Để phép chia đã cho là phép chia hết khi và chỉ khi phần dư bằng 0. Do đó, a =0
Chọn đáp án A