Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\frac{5a-17}{4a-23}=\frac{4.\left(5a-17\right)}{4.\left(4a-23\right)}=\frac{20a-68}{4.\left(4a-23\right)}=\frac{20a-68-47+47}{4.\left(4a-23\right)}=\frac{20a-115+47}{4.\left(4a-23\right)}=\frac{5.\left(4a-23\right)+47}{4.\left(4a-23\right)}=\frac{5.\left(4a-23\right)}{4.\left(4a-23\right)}+\frac{47}{4.\left(4a-23\right)}\)
=>\(A=\frac{5}{4}+\frac{47}{16a-92}\)
Để A lớn nhất
=>\(\frac{5}{4}+\frac{47}{16a-92}\)lớn nhất
=>\(\frac{47}{16a-92}\)lớn nhất
=>16a-92 bé nhất
và 16a-92\(\ge1\)
=>Giá trị bé nhất là: 16a-92=0=>a=5,8125
=>Giá trị lớn nhất của A là: \(\frac{5}{4}+\frac{47}{1}=\frac{193}{4}\)
Vậy giá trị lớn nhất của A là \(\frac{193}{4}\)khi a=5,8125
Đặt \(A=\frac{5a-17}{4a-23}=\frac{4.\left(5a-17\right)}{4.\left(4a-23\right)}=\frac{20a-68}{4.\left(4a-23\right)}=\frac{20a-115+47}{4.\left(4a-23\right)}=\frac{5.\left(4a-23\right)+47}{4.\left(4a-23\right)}\)
\(=>A=\frac{5.\left(4a-23\right)}{4.\left(4a-23\right)}+\frac{47}{4.\left(4a-23\right)}=\frac{5}{4}+\frac{47}{4.\left(4a-23\right)}=\frac{5}{4}+\frac{57}{16a-92}\)
Để A đạt giá trị lớn nhất
=>\(\frac{5}{4}+\frac{47}{16a-92}\)đạt giá trị lớn nhất
=>\(\frac{47}{16a-92}\)đạt giá trị lớn nhất
=>16a-92 đạt giá trị bé nhất
và 16a-92\(\ge1\)
=>16a\(\ge93\)>80
=>16a>80
=>a>5
Để 16a-92 đạt giá trị bé nhất
=>a đạt giá trị bé nhất
mà a là số tự nhiên
=>a=6
Khi đó: \(A=\frac{5}{4}+\frac{47}{16.6-92}=\frac{5}{4}+\frac{47}{4}=13\)
Vậy A đạt giá trị lớn nhất là 13 khi a=6
A=\(\frac{5a-17}{4a-23}=\frac{\frac{5}{4}.\left(4a-23\right)+\frac{115}{4}-17}{4a-23}=\frac{5}{4}+\frac{47}{4.\left(4a-23\right)}\)
Để A lớn nhất thì \(\frac{1}{4a-23}\) là số dương lớn nhất => 4a-23 là nhỏ nhất mà a là số tự nhiên=>4a-23=1 => a=6
Vậy a=6 thì A có giá trị lớn nhất là:\(\frac{5}{4}+\frac{47}{4}=\frac{52}{4}\)=\(13\)
a) Ta có: \(\frac{n+19}{n-2}=\frac{n-2+21}{n-2}=1+\frac{21}{n-2}\)
Để phân số tối giản thì: \(\frac{21}{n-2}\in Z\)
\(\Rightarrow21⋮n-2\)
\(\Rightarrow n-2\inƯ\left(21\right)=\left\{1;-1;3;-3;7;-7;21;-21\right\}\)
\(\Rightarrow n\in\left\{3;1;5;-1;9;-5;23;-19\right\}\)
a. Ta tách \(\frac{8a+19}{4a+1}=\frac{\left(8a+2\right)+17}{4a+1}=2+\frac{17}{4a+1}\)
Để biểu thức trên có giá trị nguyên thì \(4a+1\inƯ\left(17\right)=\left\{-1;1;17;-17\right\}\)
Do a là số tự nhiên nên \(a\in\left\{0;4\right\}\)
b. Ta bổ sung là biểu thức có giá trị nguyên lớn nhất:
Gọi \(A=\frac{5a-17}{4a-23}\). A nguyên thì 4A cũng nguyên, hay \(\frac{20a-68}{4a-23}\in Z.\)
\(\frac{20a-68}{4a-23}=5+\frac{47}{4a-23}\)
Vậy thì \(4a-23\inƯ\left(47\right)=\left\{-1;1;47;-47\right\}\)
Do a là số tự nhiên nên \(a=6\)
Với a = 6, A = 13 là giá trị nguyên lớn nhất.
a) \(\frac{8a+19}{4a+1}\)CÓ GIÁ TRỊ NGUYÊN
\(\Rightarrow8a+19⋮4a+1\Rightarrow2\left(4a+1\right)+17⋮4a+1\)
\(\Rightarrow17⋮4a+1\Rightarrow4a+1\inƯ\left(17\right)=\left[\pm1;\pm17\right]\)
\(\Rightarrow\)\(4a+1=\)\(1\)\(\Rightarrow\)\(a\)\(=0\)(TM).
\(\Rightarrow\)\(4a+1=\)\(-1\)\(\Rightarrow\)\(a\)\(=\frac{-2}{4}\)(LOẠI).
\(\Rightarrow\)\(4a+1=\)\(17\)\(\Rightarrow\)\(a\)\(=6\)(TM).
\(\Rightarrow\)\(4a+1=\)\(-17\)\(\Rightarrow\)\(a\)\(=\frac{-9}{2}\)(LOẠI).
VẬY \(a\)\(=0\)HOẶC \(a=6\)
bạn nhấn vào đúng 0 sẽ hiện ra kết quả, mình giải rồi dễ lắm