Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x^2+5 x^4+2x^3+10x+a x^2+2x-5 x^4+5x^2 2x^3-5x^2+10x+a 2x^3 +10x -5x^2+a -5x^2-25 a+25
Để x4+2x3+10x+a chia hết cho đa thức x2+5 thì
\(a+25=0\Leftrightarrow a=-25\)
a) Mình không rảnh đặt phép chia, hệ số bất định vậy.
Giả sử khi A chia hết cho B thì sẽ được thương là x+c
\(\Rightarrow A=B\left(x+c\right)\)
\(\Leftrightarrow x^3+ax^2+2x+b=\left(x^2+2x+3\right)\left(x+c\right)\)
\(\Leftrightarrow x^3+ax^2+2x+b=x^3+\left(2+c\right)x^2+\left(3+2c\right)x+3c\)
\(\Leftrightarrow\hept{\begin{cases}a=2+c\\2=3+2c\\b=3c\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a=\frac{3}{2}\\b=\frac{-3}{2}\\c=\frac{-1}{2}\end{cases}}\)
KL: \(a=\frac{3}{2};b=\frac{-3}{2}\)
b) Giải tương tự.
bài 2
b) x2(x2+1)-x2-1=0
=>x2(x2+1)-(x2+1)=0
=>(x2+1)(x2-1)=0
=>x2+1=0 hoặc x2-1=0
=>x2=-1 (loại)hoặc x2=1
=>x=\(\pm\) 1
vậy x=\(\pm\)1
a) B(-1) = 2.(- 1)2 - (- 1) + 1 = 4
b) Thực hiện phép chia ta có:
\(2x^3+5x^2-2x+a=\left(x+3\right)+\frac{a-3}{2x^2-x+1}\)
Vậy nên để đa thức A chia hết cho đa thức B thì a - 3 = 0 hay a = 3.
c) Để B = 1 thì \(2x^2-x+1=1\Leftrightarrow2x^2-x=0\Leftrightarrow x\left(2x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{2}\end{cases}}\)
a) Cho x2 - x + 5=0 =>x={ \(\frac{1}{2}+\frac{\sqrt{19}}{2}i;\frac{1}{2}-\frac{\sqrt{19}}{2}i\) }
Thay giá trị của x là \(\frac{1}{2}+\frac{\sqrt{19}}{2}i\)hoặc \(\frac{1}{2}-\frac{\sqrt{19}}{2}i\) vừa tìm được vào x4 - x3 + 6x2- x sẽ luôn được kết quả là -5
=>-5 +a=0 => a=5
b) Cho x+2=0 => x=-2
Thay giá trị của x vào biểu thức 2x3 - 3x2 + x sẽ được kết quả là -30
=> -30 + a=0 => a=30
a) Cho 3n +1 =0 => n= \(\frac{-1}{3}\)
Thay n= \(\frac{-1}{3}\)vào biểu thức 3n3 + 10n2 -5 sẽ được kết quả -4
Vậy n = -4
b) Cho n-1=0 => n=1
Thay n=1 vào biểu thức 10n2 + n -10 sẽ được kết quả là 1
Vậy n = 1
C1
a) -7x(3x-2)=-21x^2+14x
b) 87^2+26.87+13^2=87^2+2.13.87+13^2=(87+13)^2=100^2
C2
a) (x-5)(x+5)
b)3x(x+5)-2(x+5)=(3x-2)(x+5)=0
\(\Rightarrow\left[\begin{array}{nghiempt}3x-2=0\\x+5=0\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=\frac{2}{3}\\x=-5\end{array}\right.\)
Vậy S={-5;2/3}
C3:
a)3x^3-2x^2+2=(x+1)(3x^2-5x-5)-3
b) Để A chia hết cho B=> x+1\(\inƯ\left(-3\right)\)
\(\Rightarrow\begin{cases}x+1=3\\x+1=-3\\x+1=1\\x+1=-1\end{cases}\)\(\Rightarrow\begin{cases}x=2\\x=-4\\x=0\\x=-2\end{cases}\)
Trả lời:
x^2 - 2x + 1 x^3 - 3x + a x + 2 x^3 - 2x^2 + x 2x^2 - 4x + a - 2x^2 - 4x + 2 - a - 2
dư: a - 2
Để phép chia hết thì a - 2 = 0 <=> a = 2
Vậy để A chia hết cho B thì a = 2