\(f\left(x\right)=\frac{x^3}{3}-\frac{x^2}{2}+ax+1;g\left(x\right)=\frac{x^3...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2016

\(f'\left(x\right)=x^2+2x+3a;g'\left(x\right)=x^2-x+a\)

Ta cần tìm a sao cho g'(x) có 2 nghiệm phân biệt \(x_1\)<\(x_2\) và f'(x) có 2 nghiệm phân biệt \(x_3\)<\(x_4\) sao cho

 \(x_1\) <\(x_3\)<\(x_2\) <\(x_4\) và  \(x_3\)<\(x_1\)<\(x_4\) <\(x_2\)  => \(\begin{cases}\Delta'_1=1-3a>0;\Delta'_2=1-4a>0\\f'\left(x_1\right)f'\left(x_2\right)<0\end{cases}\)

                                                            \(\Leftrightarrow\begin{cases}a<\frac{1}{4}\\f'\left(x_1\right)f'\left(x_2\right)<0\end{cases}\) (*)
Ta có : \(f'\left(x_1\right)f'\left(x_2\right)<0\) \(\Leftrightarrow\left[g'\left(x_1\right)+3x_1+2a\right]\left[g'\left(x_2\right)+3x_2+2a\right]<0\)
                                         \(\Leftrightarrow\left(3x_1+2a\right)\left(3x_2+2a\right)<0\)
                                         \(\Leftrightarrow9x_1x_2+6a\left(x_1+x_2\right)+4a^2=a\left(4a+15\right)<0\)
                                         \(\Leftrightarrow-\frac{15}{4}\)<a<0
27 tháng 3 2016

Do \(f'\left(x\right)=x^2-2mx-1=0\)

Có \(\Delta'=m^2+1>0\) nên\(f'\left(x\right)=0\) có 2 nghiệm phân biệt \(x_1,x_2\) và hàm số đạt cực trị tại  \(x_1,x_2\)  với các điểm \(A\left(x_1,y_1\right);B\left(x_2,y_2\right)\)

Thực hiện phép chia \(f\left(x\right)\) cho \(f'\left(x\right)\) ta có :

\(f\left(x\right)=\frac{1}{3}\left(x-m\right)f'\left(x\right)-\frac{2}{3}\left(m^1+1\right)x+\left(\frac{2}{3}m+1\right)\)

Do \(f'\left(x_1\right)=f\left(x_2\right)=0\) nên

\(y_1=f\left(x_1\right)=-\frac{2}{3}\left(m^1+1\right)x_1+\left(\frac{2}{3}m+1\right)\)

\(y_2=f\left(x_2\right)=-\frac{2}{3}\left(m^2+1\right)x_2+\left(\frac{2}{3}m+1\right)\)

Ta có \(AB^2=\left(x_2-x_1\right)^2+\left(y_2-y_1\right)^2=\left(x_2-x_1\right)^2+\frac{4}{9}\left(m^2+1\right)^2\left(x_2-x_1\right)^2\)

                  \(=\left[\left(x_2-x_1\right)^2-4x_2x_1\right]\left[1+\frac{4}{9}\left(m^2+1\right)^2\right]\)

                  \(=\left(4m^2+4\right)\left[1+\frac{4}{9}\left(m^2+1\right)^2\right]\ge4\left(1+\frac{4}{9}\right)\)

\(\Rightarrow AB\ge\frac{2\sqrt{13}}{3}\)

Vậy Min \(AB=\frac{2\sqrt{13}}{3}\) xảy ra <=> m=0

27 tháng 3 2016

Hàm số có cực đại, cực tiểu \(\Leftrightarrow f'\left(x\right)=3x^2-6x+m^2=0\) có 2 nghiệm phân biệt

\(\Leftrightarrow\Delta'=9-3m^2>0\Leftrightarrow\left|m\right|<\sqrt{3}\)

Thực hiện phép chia \(f\left(x\right)\) cho \(f'\left(x\right)\) ta có :

\(f\left(x\right)=\frac{1}{3}\left(x-1\right)f'\left(x\right)+\frac{2}{3}\left(m^2-3\right)x+\frac{m}{3}+m\)

Với \(\left|m\right|<\sqrt{3}\) thì phương trình \(f'\left(x\right)=0\) có 2 nghiệm \(x_1,x_2\) và hàm số y=f(x) đạt cực trị tại \(x_1,x_2\)

Ta có \(f'\left(x_1\right)=f'\left(x_2\right)=0\) nên :

\(y_1=f\left(x_1\right)=\frac{2}{3}\left(m^2-3\right)x_1+\frac{m^2}{3}+m\)

\(y_2=f\left(x_2\right)=\frac{2}{3}\left(m^2-3\right)x_2+\frac{m^2}{3}+m\)

=> Đường thẳng đi qua cực đại, cực tiểu là \(\left(d\right):y=\frac{2}{3}\left(m^2-3\right)x+\frac{m^2}{3}+m\)

Các điểm cực trị \(A\left(x_1,y_1\right);B\left(x_2,y_2\right)\) đối xứng nhau qua \(\left(\Delta\right):y=\frac{1}{2}x-\frac{5}{2}\)

\(\Leftrightarrow\left(d\right)\perp\left(\Delta\right)\) tại trung điểm I của AB (*)

Ta có \(x_1=\frac{x_1+x_2}{2}=1\) suy ra từ (*) \(\Leftrightarrow\begin{cases}\frac{2}{3}\left(m^2-3\right)\frac{1}{2}=-1\\\frac{2}{3}\left(m^2-3\right).1+\frac{m^2}{3}+m=\frac{1}{2}.1-\frac{5}{2}\end{cases}\)

                                                        \(\Leftrightarrow\begin{cases}m=0\\m\left(m+1\right)=0\end{cases}\)

                                                        \(\Leftrightarrow m=0\)

 

24 tháng 3 2016

a) Xét phương trình : \(f'\left(x\right)=2x^2+2\left(\cos a-3\sin a\right)x-8\left(1+\cos2a\right)=0\)

 Ta có : \(\Delta'=\left(\cos a-3\sin a\right)^2+16\left(1+\cos2a\right)=\left(\cos a-3\sin a\right)^2+32\cos^2\)\(a\ge0\) với mọi a

Nếu \(\Delta'=0\Leftrightarrow\cos a-3\sin a=\cos a=0\Leftrightarrow\sin a=\cos a\Rightarrow\sin^2a+\cos^2a=0\) (Vô lí)

Vậy \(\Delta'>0\) 

với mọi a \(\Rightarrow f'\left(x\right)=0\) 

có 2 nghiệm phân biệt \(x_1,x_2\) và hàm số có cực đại, cực tiểu

b) Theo Viet ta có \(x_1+x_2=3\sin a-\cos a\)

                             \(x_1x_2=-4\left(1+\cos2a\right)\)

\(x^2_1+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=\left(3\sin a-\cos a\right)^2+8\left(1+\cos2a\right)=9+8\cos^2a-6\sin a\cos a\)

              \(=9+9\left(\sin^2a+\cos^2a\right)-\left(3\sin a+\cos a\right)^2=18-\left(3\sin a+\cos2a\right)\le18\)

 

23 tháng 4 2016

Hàm số xác định trên R

Ta có \(y'=x^2-2mx+2m-1\Rightarrow y'=0\Leftrightarrow x^2-2mx+2m-1=0\left(2\right)\)

Hàm số có 2 điểm cực trị dương \(\Leftrightarrow\left(2\right)\) có 2 nghiệm dương phân biệt :

\(\Leftrightarrow\begin{cases}\Delta'=m^2-2m+1>0\\S=2m>0\\P=2m-1>0\end{cases}\) \(\Leftrightarrow\begin{cases}m>\frac{1}{2}\\m\ne1\end{cases}\)

Vậy \(\begin{cases}m>\frac{1}{2}\\m\ne1\end{cases}\) là giá trị cần tìm

22 tháng 1 2016

a) Mẫu số chứa các biểu thức có nghiệm  thực và không có nghiệm thực.

\(f\left(x\right)=\frac{x^2+2x-1}{\left(x-1\right)\left(x^2+1\right)}=\frac{A}{x-1}+\frac{Bx+C}{x^2+1}=\frac{A\left(x^2+1\right)+\left(x-1\right)\left(Bx+C\right)}{\left(x-1\right)\left(x^2+1\right)}\left(1\right)\)

Tay x=1 vào 2 tử, ta có : 2=2A, vậy A=1

Do đó (1) trở thành : 

\(\frac{1\left(x^2+1\right)+\left(x-1\right)\left(Bx+C\right)}{\left(x-1\right)\left(x^2+1\right)}=\frac{\left(B+1\right)x^2+\left(C-B\right)x+1-C}{\left(x-1\right)\left(x^2+1\right)}\)

Đồng nhất hệ số hai tử số, ta có hệ :

\(\begin{cases}B+1=1\\C-B=2\\1-C=-1\end{cases}\)\(\Leftrightarrow\)\(\begin{cases}B=0\\C=2\\A=1\end{cases}\)\(\Rightarrow\)

\(f\left(x\right)=\frac{1}{x-1}+\frac{2}{x^2+1}\)

Vậy :

\(f\left(x\right)=\frac{x^2+2x-1}{\left(x-1\right)\left(x^2+1\right)}dx=\int\frac{1}{x-1}dx+2\int\frac{1}{x^2+1}=\ln\left|x+1\right|+2J+C\left(2\right)\)

* Tính \(J=\int\frac{1}{x^2+1}dx.\)

Đặt \(\begin{cases}x=\tan t\rightarrow dx=\left(1+\tan^2t\right)dt\\1+x^2=1+\tan^2t\end{cases}\)

Cho nên :

\(\int\frac{1}{x^2+1}dx=\int\frac{1}{1+\tan^2t}\left(1+\tan^2t\right)dt=\int dt=t;do:x=\tan t\Rightarrow t=arc\tan x\)

Do đó, thay tích phân J vào (2), ta có : 

\(\int\frac{x^2+2x-1}{\left(x-1\right)\left(x^2+1\right)}dx=\ln\left|x-1\right|+arc\tan x+C\)

22 tháng 1 2016

b) Ta phân tích 

\(f\left(x\right)=\frac{x^2+1}{\left(x-1\right)^3\left(x+3\right)}=\frac{A}{\left(x-1\right)^3}+\frac{B}{\left(x-1\right)^2}+\frac{C}{x-1}+\frac{D}{x+3}\)\(=\frac{A\left(x+3\right)+B\left(x-1\right)\left(x+3\right)+C\left(x-1\right)^2\left(x+3\right)+D\left(x-1\right)^3}{\left(x-1\right)^3\left(x+3\right)}\)

Thay x=1 và x=-3 vào hai tử số, ta được :

\(\begin{cases}x=1\rightarrow2=4A\rightarrow A=\frac{1}{2}\\x=-3\rightarrow10=-64D\rightarrow D=-\frac{5}{32}\end{cases}\)

Thay hai giá trị của A và D vào (*) và đồng nhất hệ số hai tử số, ta cso hệ hai phương trình :

\(\begin{cases}0=C+D\Rightarrow C=-D=\frac{5}{32}\\1=3A-3B+3C-D\Rightarrow B=\frac{3}{8}\end{cases}\)

\(\Rightarrow f\left(x\right)=\frac{1}{2\left(x-1\right)^3}+\frac{3}{8\left(x-1\right)^2}+\frac{5}{32\left(x-1\right)}-+\frac{5}{32\left(x+3\right)}\)

Vậy : 

\(\int\frac{x^2+1}{\left(x-1\right)^3\left(x+3\right)}dx=\)\(\left(\frac{1}{2\left(x-1\right)^3}+\frac{3}{8\left(x-1\right)^2}+\frac{5}{32\left(x-1\right)}-+\frac{5}{32\left(x+3\right)}\right)dx\)

\(=-\frac{1}{a\left(x-1\right)^2}-\frac{3}{8\left(x-1\right)}+\frac{5}{32}\ln\left|x-1\right|-\frac{5}{32}\ln\left|x+3\right|+C\)

\(=-\frac{1}{a\left(x-1\right)^2}-\frac{3}{8\left(x-1\right)}+\frac{5}{32}\ln\left|\frac{x-1}{x+3}\right|+C\)

22 tháng 4 2016

Ta có \(y'=3x^2-3\left(m-2\right)x-3\left(m-1\right)\), với mọi \(x\in R\)

\(y'=0\Leftrightarrow x^2-\left(m-2\right)x-m+1=0\Leftrightarrow x_1=-1;x_2=m-1\)

Chú ý rằng với m > 0 thì \(x_1< x_2\). Khi đó hàm số đạt cực đại tại \(x_1=-1\) và đạt cực tiểu tại \(x_2=m-1\). Do đó :

\(y_{CD}=y\left(-1\right)=\frac{3m}{2};y_{CT}=y\left(m-1\right)=-\frac{1}{2}\left(m+2\right)\left(m-1\right)^2+1\)

Từ giả thiết ta có \(2.\frac{3m}{2}-\frac{1}{2}\left(m+2\right)\left(m-1\right)^2+1\Leftrightarrow6m-6-\left(m+2\right)\left(m-1\right)^2=0\)

                                                                              \(\Leftrightarrow\left(m-1\right)\left(m^2+m-8\right)=0\Leftrightarrow m=1;m=\frac{-1\pm\sqrt{33}}{2}\)

Đối chiếu yêu cầu m > 0, ta có giá trị cần tìm là \(m=1;m=\frac{-1\pm\sqrt{33}}{2}\)

29 tháng 9 2016

Theo mình:

để hàm số đồng biến, đk cần là y'=0.

a>0 và \(\Delta'< 0\)

nghịch biến thì a<0 

vì denta<0 thì hầm số cùng dấu với a

mình giải được câu a với b

câu c có hai cực trị thì a\(\ne\)0, y'=0, denta>0 (để hàm số có hai nghiệm pb) 

câu d dùng viet

câu e mình chưa chắc lắm ^^

25 tháng 3 2016

Hàm số có cực đại và cực tiểu

\(\Leftrightarrow f'\left(x\right)=x^2-2mx+m=0\) có 2 nghiệm phân biệt

\(\Leftrightarrow\Delta'=m^2-m>0\Leftrightarrow m\in D=\left(-\infty,0\right)\cup\left(1,+\infty\right)\) (*)

Với điều kiện này thì \(f'\left(x\right)=0\) có 2 nghiệm phân biệt \(x_1,x_2\) và hàm số \(f\left(x\right)\) đạt cực trị tại  \(x_1,x_2\). Theo định lí Viet ta có : \(x_1+x_2=2m;x_1x_2=m\) Suy ra :

\(\left|x_1-x_2\right|\ge8\Leftrightarrow\left|x_1-x_2\right|^2\ge64\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2\ge64\Leftrightarrow4m^2-4m\ge64\)

\(\Leftrightarrow m^2-m-16\ge0\Leftrightarrow m\in\left(-\infty,\frac{1-\sqrt{65}}{2}\right)\cup\left(\frac{1+\sqrt{65}}{2},+\infty\right)\) (thỏa mãn (*))

Vậy để \(\left|x_1-x_2\right|\ge8\) thì \(m\in\left(-\infty,\frac{1-\sqrt{65}}{2}\right)\cup\left(\frac{1+\sqrt{65}}{2},+\infty\right)\)