\(^3\)-3x\(^2\)+x+a) chia hết cho (x+2)

...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2021

Ta có: \(2x^3-3x^2+x+a⋮x+2\)

\(\Leftrightarrow2x^3+4x^2-7x^2-14x+13x+26+a-26⋮x+2\)

\(\Leftrightarrow a-26=0\)

hay a=26

11 tháng 10 2019

Bài 1: Đặt \(f\left(x\right)=\left(x^2+x+1\right)^{10}+\left(x^2-x+1\right)^{10}-2\)

Giả sử  \(f\left(x\right)\)chia hết cho x-1

\(\Rightarrow f\left(x\right)=\left(x-1\right)q\left(x\right)\)

\(\Rightarrow f\left(1\right)=\left(1-1\right)q\left(1\right)\)

               \(=0\)

\(\Leftrightarrow\left(1^2+1+1\right)^{10}+\left(1^2-1+1\right)^{10}-2=0\)

Mà \(\left(1^2+1+1\right)^{10}+\left(1^2-1+1\right)^{10}-2=59048\)

\(\Rightarrow\)mâu thuẫn 

\(\Rightarrow f\left(x\right)\)không chia hết cho x-1 ( trái với đề bài )

Bài 2:

x^4-x^3-3x^2+ax+b x^2-x-2 x^2-1 x^4-x^3-2x^2 - - -x^2+ax+b -x^2+x+2 - (a-1)x+b-2

Vì \(x^4-x^3-3x^2+ax+b\)chia cho \(x^2-x-2\)dư \(2x-3\)

\(\Rightarrow\left(a-1\right)x+b-2=2x-3\)

Đồng nhất hệ  số 2 vế ta được:

\(\hept{\begin{cases}a-1=2\\b-2=-3\end{cases}\Leftrightarrow}\hept{\begin{cases}a=3\\b=-1\end{cases}}\)

Vậy ...

Bài 3:

Vì \(P\left(x\right)\)chia \(x+3\)dư 1

\(\Rightarrow P\left(x\right)=\left(x+3\right)q\left(x\right)+1\)

\(\Rightarrow q\left(-3\right)=\left(-3+3\right)q\left(-3\right)+1\)

                      \(=1\left(1\right)\)

Vì \(P\left(x\right)\)chia \(x-4\)dư 8

\(\Rightarrow P\left(x\right)=\left(x-4\right)q\left(x\right)+8\)

\(\Rightarrow P\left(4\right)=\left(4-4\right)q\left(4\right)+8\)

                    \(=8\left(2\right)\)

Vì \(P\left(x\right)\)chia cho \(\left(x+3\right)\left(x-4\right)\)được thương là 3x và còn dư

\(\Rightarrow P\left(x\right)=\left(x+3\right)\left(x-4\right)3x+ax+b\left(3\right)\)

Từ (1) , (2) và (3) \(\Rightarrow\hept{\begin{cases}-3a+b=1\\4a+b=8\end{cases}\Leftrightarrow\hept{\begin{cases}-12a+3b=4\\12a+3b=24\end{cases}\Leftrightarrow}\hept{\begin{cases}b=4\\a=1\end{cases}\left(4\right)}}\)

Thay (4) vào (3) ta được:

\(P\left(x\right)=\left(x+3\right)\left(x-4\right)3x+x+4\)

\(\Leftrightarrow P\left(x\right)=3x^3-3x^2-20x+4\)

11 tháng 10 2019

cảm ơn nhé

15 tháng 8 2019

Thực hiện phép chia ta có:

Ta có: \(x^3-2x^2+7x-7=\left(x^2+3\right)\left(x-2\right)+4x-1\)

\(x^3-2x^2+7x-7\) chia hết cho \(x^2+3\)

=> \(4x-1⋮x^2+3\) (1)

=> \(4x^2-x=x\left(4x-1\right)⋮x^2+3\)

Mà: \(4x^2+12=4\left(x^2+3\right)⋮x^2+3\)

=> \(\left(4x^2-x\right)-\left(4x^2+12\right)⋮x^2+3\)

=> \(-x-12⋮x^2+3\)

=> \(x+12⋮x^2+3\)

=> \(4x+48⋮x^2+3\) (2)

Từ (1); (2) => \(\left(4x+48\right)-\left(4x-1\right)⋮x^2+3\)

=> \(49⋮x^2+3\)

=> \(x^2+3\in\left\{\pm1;\pm7;\pm49\right\}\) vì \(x^2+3\ge3\) với mọi x

=> \(\begin{cases}x^2+3=7\\x^2+3=49\end{cases}\Rightarrow\orbr{\begin{cases}x^2=4\\x^2=46\left(loại\right)\end{cases}}\)

Với \(x^2=4\Rightarrow x=\pm2\) thử vào bài toán x=-2 loại. x=2 thỏa mãn

Vậy x=2

15 tháng 8 2019

Em cảm ơn cô

29 tháng 11 2016

sửa lại :

1) ...; \(\div x-2\) dư 4

30 tháng 11 2016

giúp e vs các a cj soyeon_Tiểubàng giải

Phương An

Hoàng Lê Bảo Ngọc

Nguyễn Huy Tú

Silver bullet

Nguyễn Như Nam

Nguyễn Trần Thành Đạt

Nguyễn Huy Thắng

Võ Đông Anh Tuấn

 

30 tháng 11 2016

giúp e vs các a cj soyeon_Tiểubàng giải

Phương An

Hoàng Lê Bảo Ngọc

Silver bullet

Nguyễn Huy Tú

Nguyễn Như Nam

Hoàng Tuấn Đăng

Nguyễn Trần Thành Đạt

Nguyễn Huy Thắng

Võ Đông Anh Tuấn

17 tháng 7 2019

gọi thương của phép chia ax3+bx2+c cho x-2 là f(x) ta đc

ax3+bx2+c=(x-2).f(x)

Đẳng thức trên luôn đúng với mọi x

* với x=2 thì 8a+4b+c=0                                               (1)

gọi thương của ax3+bx2+c cho x2-1 là q(x) ta có

ax3+bx2+c=(x-1)(x+1).q(x)+2x+5

đẳng thức trên luôn đúng

* với x=1 thì a+b+c=7                                                   (2)

* với x=-1 thì -a+b+c=3                                                (3)

từ (1) , (2) và (3) ta có

a=2 ,b=7 , c=-2

17 tháng 7 2019

gọi thương của phép chia ax3+bx2+c cho x-2 là f(x) ta đc

ax3+bx2+c=(x-2).f(x)

Đẳng thức trên luôn đúng với mọi x

* với x=2 thì 8a+4b+c=0                                           (1)

gọi thương của ax3+bx2+c cho x2-1 là q(x) ta có

ax3+bx2+c=(x-1)(x+1).q(x)+2x+5

đẳng thức trên luôn đúng

* với x=1 thì a+b+c=7                                           (2)

* với x=-1 thì -a+b+c=3                                           (3)

từ (1) , (2) và (3) ta có

a=2 ,b=7 , c=-2

22 tháng 7 2019

Ta có: \(\frac{P\left(x\right)}{Q\left(x\right)}=\frac{x^4+x^3-2x^2+ax+b+x^2}{x^2+x-2}=x^2+\frac{x^2+ax+b}{x^2+x-2}\) 

Để P(x)\(⋮\) Q(x)

\(\Rightarrow x^2+ax+b⋮x^2+x-2\) 

\(\Rightarrow a=1;b=-2\) 

Vậy.......

Bài 1 : Giai phương trình:\(\frac{x+1}{2012}\)+\(\frac{x+2}{2011}\)=\(\frac{x+3}{2010}\)+\(\frac{x+4}{2009}\)x2-20162)2  -8064x-1  =0\(\frac{x+1}{2017}\)+\(\frac{x+2}{2014}\)=\(\frac{x+2001}{2015}\)+\(\frac{2014}{12}\)Bài 2:Giai toán bằng cách lập phương trình :Một giá sách có 2 ngăn, ngăn thứ 1 chứa 120 cuốn, ngăn thứ 2 chứa 140 cuốn. Người ta lấy số sách ở ngăn thứ 1 nhiều gấp 3 lần số sách lấy ở...
Đọc tiếp

Bài 1 : Giai phương trình:

  • \(\frac{x+1}{2012}\)+\(\frac{x+2}{2011}\)=\(\frac{x+3}{2010}\)+\(\frac{x+4}{2009}\)
  • x2-20162) -8064x-1  =0
  • \(\frac{x+1}{2017}\)+\(\frac{x+2}{2014}\)=\(\frac{x+2001}{2015}\)+\(\frac{2014}{12}\)

Bài 2:Giai toán bằng cách lập phương trình :

  • Một giá sách có 2 ngăn, ngăn thứ 1 chứa 120 cuốn, ngăn thứ 2 chứa 140 cuốn. Người ta lấy số sách ở ngăn thứ 1 nhiều gấp 3 lần số sách lấy ở ngăn hai. Lúc đó số sách còn lại ở ngăn 1 bằng một nửa số sách ở ngăn 2. Tính số sách lấy ra ở mỗi ngăn?
  • Một ca nô xuôi dòng từ bến A đến bến B mất 2h vàngược dòng từ bến B về bến A mất 2h30min. Tính khoảng cách giữa 2 bến A và B biết rằng vận tốc của nước là 8km/h 

Bạn Sơn đi xe đạp từ nhà đến tp Hà Nội với vận tốc trung bình là 15km/h. Lúc về Sơn đi với vận tốc trung bình là 12km/h, nên thời gian về nhiều hơn thời gian đi là 22min. Tính độ dài quãng đường từ nhà bạn Sơn đến tp Hà Nội 


Bài 3 :Tìm m nguyên để    A=\(\frac{4}{m+1}\)nhận giá trị nguyên


Mình xin lỗi vì làm phiền các bạn bài nhiều như vậy mong các bạn giúp mình

XIN CÁM ƠN!!!!

0