Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) 43+45+47+...+565 [có (565-43)/2+1= 262 số hạng)
= [(565+43)*262]/2
= 79648
b) 21+24+27+...+318 [có (318-21)/3+1= 100 số hạng]
= [(318+21)*100]/2
= 16950
mình xin nhầm đề là: A = \(1*2*3+2*4*6+4*8*12+8*16*24 \over2*3*4+4*6*8+8*12*16+16*24*32\)
\(A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{9900}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}=\frac{99}{100}\)
Mình chỉnh lại đề B nha:
\(B=\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+...+\frac{1}{9999}\)
\(=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{99.101}\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{101}\right)\)
\(=\frac{1}{2}.\frac{100}{101}=\frac{50}{101}\)
\(A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{9900}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=1-\frac{1}{100}\)
\(A=\frac{99}{100}\)
\(\dfrac{2}{7}=\dfrac{6}{21}=\dfrac{16}{56}=\dfrac{30}{105}\)
Bài a,b tự làm:
c,99 x 2014-50 x 2014+2014
=(99-50+1) x 2014
=50 x 2014
=100700
d,(81 x 11):9
=891:9
=99
e,46 x 6+46 x 4
=46 x (4+6)
=46 x 10
=460