![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
+ \(\frac{\overline{ab}+\overline{bc}}{a+b}=\frac{\overline{bc}+\overline{ca}}{b+c}=\frac{\overline{ca}+\overline{ab}}{c+a}=\frac{\overline{ab}+\overline{bc}-\overline{bc}-\overline{ca}+\overline{ca}+\overline{ab}}{a+b-b-c+c+a}=\frac{2\overline{ab}}{2a}=10+\frac{b}{a}\)
+ \(\frac{\overline{ab}+\overline{bc}}{a+b}=\frac{\overline{bc}+\overline{ca}}{b+c}=\frac{\overline{ca}+\overline{ab}}{c+a}=\frac{\overline{ab}+\overline{bc}+\overline{bc}+\overline{ca}-\overline{ca}-\overline{ab}}{a+b+b+c-c-a}=\frac{2\overline{bc}}{2b}=10+\frac{c}{b}\)
+ \(\frac{\overline{ab}+\overline{bc}}{a+b}=\frac{\overline{bc}+\overline{ca}}{b+c}=\frac{\overline{ca}+\overline{ab}}{c+a}=\frac{-\overline{ab}-\overline{bc}+\overline{bc}+\overline{ca}+\overline{ca}+\overline{ab}}{-a-b+b+c+c+a}=\frac{2\overline{ca}}{2c}=10+\frac{a}{c}\)
=> \(\frac{b}{a}=\frac{c}{b}=\frac{a}{c}\Rightarrow\frac{b+c+a}{a+b+c}=1\Rightarrow a=b=c\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{x+15}{2000}+\frac{x+16}{1999}=\frac{x+17}{1998}+\frac{x+18}{1997}\)
\(\Leftrightarrow\frac{x+15}{2000}+1+\frac{x+16}{1999}+1=\frac{x+17}{1998}+1+\frac{x+18}{1997}+1\)
\(\Leftrightarrow\frac{x+2015}{2000}+\frac{x+2015}{1999}=\frac{x+2015}{1998}+\frac{x+2015}{1997}\)
\(\Leftrightarrow\frac{x+2015}{2000}+\frac{x+2015}{1999}-\frac{x+2015}{1998}-\frac{x+2015}{1997}=0\)
\(\Leftrightarrow\left(x+2015\right)\left(\frac{1}{2000}+\frac{1}{1999}-\frac{1}{1998}-\frac{1}{1997}\right)=0\)
Có: \(\frac{1}{2000}+\frac{1}{1999}-\frac{1}{1998}-\frac{1}{1997}\ne0\)
\(\Rightarrow x+2015=0\Rightarrow x=-2015\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(1:\overline{0,abc}=a+b+c\)
\(\Rightarrow\dfrac{1}{\overline{abc}}=\dfrac{a+b+c}{1000}\)
\(\Rightarrow\overline{abc}\left(a+b+c\right)=1000\)
Mà 0 < a + b + c < 28 nên a + b + c \(\in\) {1; 2; 4; 5; 8; 10; 20; 25}. Mà \(\overline{abc}\ge100\) nên a + b + c \(\le\) 10, do đó a + b + c \(\in\) {1; 2; 4; 5; 8; 10}. Thử từng trường hợp ta được đáp án đúng là a + b + c = 8 và \(\overline{abc}\) = 125
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\sqrt{ab}=a+b\)
a^2+2ab+b^2=10a+b
a^2+2(b-5)a+b^2-b=0
a^2+2(b-5)a+(b-5)^2+9b-25=0
(a+(b-5)^2=25-9b
(a+(b-5)^2>=0\(\hept{\begin{cases}25-9b\ge0\Rightarrow b\le3\\25-9b=k^2\Rightarrow b=\left\{0,1\right\}\end{cases}}\)
\(b=0\Rightarrow\left(a-5\right)^2=25\Rightarrow\orbr{\begin{cases}a=0\left(loai\right)\\a=10\end{cases}}\)
\(b=1\Rightarrow\left(a-4\right)^2=16\Rightarrow\orbr{\begin{cases}a=0\left(loai\right)\\a=8\end{cases}}\)
Kết luận:
ab =100
ab=81
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có:
\(\overline{abcabc}=1001\overline{abc}\)
\(=143.7.\overline{abc}\)
\(\Rightarrow1001\overline{abc}⋮7\Rightarrow\overline{abcabc}⋮7\)
\(\rightarrowđpcm\)
\(\overline{aaa}=111a\)
\(=37.3.a\)
\(\Rightarrow111a⋮37\Rightarrow\overline{aaa}⋮37\)
\(\rightarrowđpcm\)
\(\overline{1ab1}-\overline{1ba1}\)
\(=1000+\overline{ab}+1-1000-\overline{ba}-1\)
\(=\overline{ab}-\overline{ba}\)
\(=10a+b-10b-a\)
\(=9a-9b\)
\(=9\left(a-b\right)⋮9\)
Mà \(\overline{1ab1}-\overline{1ba1}=\overline{...0}⋮10\)
\(\Rightarrow\overline{1ab1}-\overline{1ba1}⋮9;10\Rightarrow⋮90\)
\(\rightarrowđpcm\)
bn ơi câu b mk ghi nhầm đề là 4 chữ a mới đúng bn giải lại giùm mk nhoa
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{ab}{bc}=\frac{b}{c}=\frac{ab-b}{bc-c}=\frac{\left(10a+b\right)-b}{\left(10b+c\right)-c}=\frac{10a}{10b}=\frac{a}{b}\)
\(\Rightarrow b^2=a.c\)
Do ab nguyên tố nên b lẻ khác 5 \(\Rightarrow b\in\left\{1;3;7;9\right\}\)
+ Với b = 1 thì 12 = a.c = 1 => a = c = 1, vô lý vì \(a\ne b\ne c\)
+ Với b = 3 thì 32 = a.c = 9 \(\Rightarrow\left[\begin{array}{nghiempt}a=c=3\\a=1;c=9\\a=9;c=1\end{array}\right.\), ta chọn được 1 cặp giá trị (a;c) thỏa mãn \(a\ne b\ne c\) và ab nguyên tố là (1;9)
+ Với b = 7 thì 72 = a.c = 49 => a = c = 7, vô lý vì \(a\ne b\ne c\)
+ Với b = 9 thì 92 = a.c = 81 => a = c = 9, vô lý vì \(a\ne b\ne c\)
Vậy abc = 139
Ta có:\(\frac{ab}{bc}=\frac{b}{c}\)(ab,bc có dấu gạch ngang trên đầu)
\(\Rightarrow\frac{10a+b}{10b+c}=\frac{b}{c}\)
\(\Rightarrow\left(10a+b\right)c=\left(10b+c\right)b\)
\(\Rightarrow10ac+bc=10b^2+bc\)
\(\Rightarrow10ac=10b^2\)
\(\Rightarrow ac=b^2\)
\(\Rightarrow abc=\) bao nhiêu tự tính(tui quên các chữ số đôi một là như thế nào rồi và abc có dấu gạch ngang trên đầu)
⇔ 1999 + \(\overline{19a8}\) ⋮ 1997
⇔ 1999 + 1908 + 10a ⋮ 1997
⇔ 1997 + 2+ 1997 - 89 + 10a ⋮ 1997
⇔ 10a - 87 ⋮ 1997
vì là chữ số thuộc hàng chục nên 0 ≤ a ≤ 9
⇔ -87 ≤ 10a - 87 ≤ 10x 9 - 87 = 3
vậy 10a - 87 không chia hết cho 1997
⇔ 1999 + \(\overline{19a8}\) không chia hết cho 1997 với mọi a ϵ {0;1;2;3;4;5;6;7;8;9}
hay không có giá trị nào của a thỏa mãn đề bài