Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.a) Theo đề bài,ta có: \(f\left(-1\right)=1\Rightarrow-a+b=1\)
và \(f\left(1\right)=-1\Rightarrow a+b=-1\)
Cộng theo vế suy ra: \(2b=0\Rightarrow b=0\)
Khi đó: \(f\left(-1\right)=1=-a\Rightarrow a=-1\)
Suy ra \(ax+b=-x+b\)
Vậy ...
Câu 3:
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}2\cdot1+a+4=4-10-b\\2-a+4=25-25-b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=-6-4-2=-12\\-a+b=-6\end{matrix}\right.\)
=>a=-3; b=-9
1. Thay x = -2 vào \(f\left(x\right)\), ta có:
\(\left(-2\right)^3+2.\left(-2\right)^2+a.\left(-2\right)+1=\)0
=> -8 + 8 - 2a + 1 = 0
=> -2a +1 = 0
=> -2a = -1
=> a = \(\frac{1}{2}\)
Vậy a = \(\frac{1}{2}\)
2. * Thay x = 1 vào \(f\left(x\right)\), ta có:
12 + 1.a + b = 1 + a + b = 0 ( 1)
* Thay x = 2 vào biểu thức \(f\left(x\right)\), ta có:
22 + 2.a + b = 4 + 2a + b = 0 ( 2)
* Lấy (2 ) - ( 1) , ta có:
( 4 + 2a + b ) - ( 1 + a + b ) = 3 + a
=> 3 + a = 0
=> a = -3
* 1 + a + b = 0
=> 1 - 3 + b = 0
=> b = -1 + 3 = -2
Vậy a= -3 và b= -2
I . Trắc Nghiệm
1B . 2D . 3C . 5A
II . Tự luận
2,a,Ta có: A+(x\(^2\)y-2xy\(^2\)+5xy+1)=-2x\(^2\)y+xy\(^2\)-xy-1
\(\Leftrightarrow\) A=(-2x\(^2\)y+xy\(^2\)-xy-1) - (x\(^2\)y-2xy\(^2\)+5xy+1)
=-2x\(^2\)y+xy\(^2\)-xy-1 - x\(^2\)y+2xy\(^2\)-5xy-1
=(-2x\(^2\)y - x\(^2\)y) + (xy\(^2\)+ 2xy\(^2\)) + (-xy - 5xy ) + (-1 - 1)
= -3x\(^2\)y + 3xy\(^2\) - 6xy - 2
b, thay x=1,y=2 vào đa thức A
Ta có A= -3x\(^2\)y + 3xy\(^2\) - 6xy - 2
= -3 . 1\(^2\) . 2 + 3 .1 . 2\(^2\) - 6 . 1 . 2 -2
= -6 + 12 - 12 - 2
= -8
3,Sắp xếp
f(x) =9-x\(^5\)+4x-2x\(^3\)+x\(^2\)-7x\(^4\)
=9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x
g(x) = x\(^5\)-9+2x\(^2\)+7x\(^4\)+2x\(^3\)-3x
=-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x
b,f(x) + g(x)=(9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x) + (-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x)
=9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x
=(9-9)+(-x\(^5\)+x\(^5\))+(-7x\(^4\)+7x\(^4\))+(-2x\(^3\)+2x\(^3\))+(x\(^2\)+2x\(^2\))+(4x-3x)
= 3x\(^2\) + x
g(x)-f(x)=(-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x) - (9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x)
=-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x-9+x\(^5\)+7x\(^4\)+2x \(^3\)-x\(^2\)-4x
=(-9-9)+(x\(^5\)+x\(^5\))+(7x\(^4\)+7x\(^4\))+(2x\(^3\)+2x\(^3\))+(2x\(^2\)-x\(^2\))+(3x-4x)
= -18 + 2x\(^5\) + 14x\(^4\) + 4x\(^3\) + x\(^2\) - x
* Mình xin sửa lại đề :
Cho hai đa thức \(f\left(x\right)=2x^2+ax+4\) và \(g\left(x\right)=x^2-5x-b\)( \(a,b\) là hằng số )
Tìm các hệ số a,b sao cho \(f\left(1\right)=g\left(2\right)\)và \(f(-1)=g(5)\)
Bài làm :
\(f\left(x\right)=2x^2+ax+4\)
\(\Rightarrow f\left(1\right)=2\left(1\right)^2+a\left(1\right)+4=2+a+4=6+a\)
\(\Rightarrow f\left(-1\right)=2\left(-1\right)^2+a\left(-1\right)+4=2+\left(-a\right)+4=6-a\)
\(g\left(x\right)=x^2-5x-b\)
\(\Rightarrow g\left(2\right)=\left(2\right)^2-5\left(2\right)-b=4-10-b=-6-b\)
\(\Rightarrow g\left(5\right)=\left(5\right)^2-5\left(5\right)-b=25-25-b=-b\)
Vì \(f\left(1\right)=g\left(2\right)\Rightarrow6+a=-6-b\)
\(f(-1)=g(5)=> 6-a=-b\)
\(\Rightarrow\left\{{}\begin{matrix}6+a=-6-b\\6-a=-b\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=-12\\-a+b=-6\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}b=-12-a\\-6=-12-a-a\end{matrix}\right.\)
\(\Rightarrow-a-12-a=-6\)
\(\Rightarrow-2a=6\)
\(\Rightarrow a=-3\)
\(\Rightarrow b=6-\left(-3\right)=9\)
Vậy : ......
1) Để đa thức f(x) có nghiệm thì:
\(x^3+2x^2+ax+1=0\)
\(f\left(-2\right)=\left(-2\right)^3+2\left(-2\right)^2+a\left(-2\right)+1=0\)
\(\Rightarrow-8+8-2a+1=0\)
\(\Rightarrow2a=1\Rightarrow a=\dfrac{1}{2}\)
Vậy a = \(\dfrac{1}{2}\).
2) Để đa thức f(x) có nghiệm thì:
\(x^2+ax+b=0\)
\(f\left(1\right)=1^2+a.1+b=0\Rightarrow a+b+1=0\)(1)
\(f\left(2\right)=2^2+a.2+b=0\Rightarrow2a+b+4=0\)
\(f\left(2\right)-f\left(1\right)=\left(2a+b+4\right)-\left(a+b+1\right)=0\)
\(\Rightarrow2a+b+4-a-b-1=0\)
\(\Rightarrow a+3=0\Rightarrow a=-3\)
Thay vào (1) ta có: -3 + b + 1 =0
\(\Rightarrow\) b - 2 = 0 \(\Rightarrow\) b = 2
Vậy a = -3; b = 2.
1) Ta có: x = -2 là nghiệm của f(x)
\(\Rightarrow f\left(-2\right)=\left(-2\right)^3+2.\left(-2\right)^2+a.\left(-2\right)+1=0\)
\(\Rightarrow f\left(-2\right)=-8+8-2a+1=0\)
\(\Rightarrow-2a+1=0\)
\(\Rightarrow-2a=-1\)
\(\Rightarrow a=0,5\)
2) Ta có: x = 1 là nghiệm của f (x)
\(\Rightarrow f\left(1\right)=1^2+a.1+b=0\)
\(\Rightarrow1+a+b=0\)
Ta có: x = 2 là một nghiệm của f (x)
\(\Rightarrow f\left(2\right)=2^2+a.2+b=0\)
\(\Rightarrow4+2a+b=0\)
\(\Rightarrow1+a+b=4+2a+b\)
\(\Rightarrow1+a+b-4-2a-b=0\)
\(\Rightarrow-3-a=0\Rightarrow a=-3\)
\(\Rightarrow1-3+b=0\Rightarrow b=2\)
Nghiệm của đa thức f(x) = 3x - 6 là x = 2
Để x = 2 là nghiệm của g(x) thì g(2) = 0 ⇒ 10a - 1 = 0 ⇒ a = 1/10. Chọn A