Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+\frac{3}{13.16}\)
\(=1\left(\frac{1}{1}-\frac{1}{16}\right)\)
\(=1.\frac{15}{16}=\frac{15}{16}\)
=3/2x( 1/3-1/5+1/5-1/7-1/7+....+ 1/97-1/99)
=3/2x( 1/3-1/99)
=3/2x 32/99
= 16/33
\(\frac{1}{1.3.7}+\frac{1}{3.7.9}+\frac{1}{7.9.13}+\frac{1}{9.13.15}+\frac{1}{13.15.19}\)
\(=\frac{1}{2}\left(\frac{1}{1.3}-\frac{1}{3.7}+\frac{1}{3.7}-\frac{1}{7.9}+...+\frac{1}{13.15}-\frac{1}{15.19}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.3}-\frac{1}{15.19}\right)=\frac{47}{285}\)
làm :
\(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\)
\(=\frac{1}{2}-\frac{1}{8}\)
\(=\frac{3}{8}\)
b, \(ab\cdot10-ab=2ab\)
\(ab\cdot10-ab\cdot1=2ab\)
\(ab\cdot\left(10-1\right)=2ab\)
\(ab\cdot9=2ab\)
\(ab\cdot9=200+ab\cdot1\)
\(ab\cdot9-ab\cdot1=200\)
\(ab\cdot\left(9-1\right)=200\)
\(ab\cdot8=200\)
\(ab=200:8\)
\(ab=25\)
\(\frac{1}{1.3.7}=\frac{1}{6}\left(\frac{1}{1.3}-\frac{1}{3.7}\right)\)
\(\frac{1}{3.7.9}=\frac{1}{6}\left(\frac{1}{3.7}-\frac{1}{7.9}\right)\)
....
\(\frac{1}{13.15.19}=\frac{1}{6}\left(\frac{1}{13.15}-\frac{1}{15.19}\right)\)
Cộng các vế với nhau ta được
\(\frac{1}{1.3.7}+\frac{1}{3.7.9}+...+\frac{1}{13.15.19}=\frac{1}{6}\left(\frac{1}{1.3}-\frac{1}{15.19}\right)=\frac{37}{3.15.19}\)
Bạn viết đề sai rồi, mình sửa đề nhé, bài này ngắn lắm =((
\(\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{99.101}\)
\(=\frac{3}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=\frac{3}{2}\left(1-\frac{1}{101}\right)=\frac{3}{2}.\frac{100}{101}=\frac{150}{101}\)(rút gọn phân số)
Ta có :
\(\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{99.101}\) ( sai đề rồi )
\(=\)\(\frac{3}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\right)\)
\(=\)\(\frac{3}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=\)\(\frac{3}{2}\left(1-\frac{1}{101}\right)\)
\(=\)\(\frac{3}{2}.\frac{100}{101}\)
\(=\)\(\frac{150}{101}\)
Vậy \(\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{99.101}=\frac{150}{101}\)
Chúc bạn học tốt ~
A = \(\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+...+\frac{3}{94.97}+\frac{3}{97.100}\)
\(\Rightarrow A=\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{94}-\frac{1}{97}+\frac{1}{97}-\frac{1}{100}\)
\(\Rightarrow A=\frac{1}{4}-\frac{1}{100}\)
\(\Rightarrow A=\frac{24}{100}=\frac{6}{25}\)
=????????????????