![](https://rs.olm.vn/images/avt/0.png?1311)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TT
0
![](https://rs.olm.vn/images/avt/0.png?1311)
Các câu hỏi dưới đây có thể giống với câu hỏi trên
HT
1
![](https://rs.olm.vn/images/avt/0.png?1311)
TN
23 tháng 6 2017
Từ \(a^2+b^2=4\Rightarrow\left(a+b\right)^2-2ab=4\Rightarrow2ab=\left(a+b\right)^2-4\)
Ta có: \(2A=\frac{2ab}{a+b+2}=\frac{\left(a+b\right)^2-4}{a+b+2}=a+b-2\)
\(\le\sqrt{2\left(a^2+b^2\right)}-2=2\sqrt{2}-2\)
\(\Rightarrow2M\le2\sqrt{2}-2\Rightarrow M\le\sqrt{2}-1\)
Đẳng thức xảy ra khi \(a=b=\sqrt{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
18 tháng 9 2016
Ta có a2 + b2 = 4 <=> 2ab = (a + b)2 - 4
Ta có \(\frac{ab+a+b+2}{a+b+2}=1+\frac{ab}{a+b+2}\)
= \(1+\frac{\left(a+b\right)^2-4}{2\left(a+b+2\right)}\)
= \(1+\frac{a+b-2}{2}\)(1)
Mà \(\frac{\left(a+b\right)^2}{2}\le a^2+b^2=4\)
<=> a + b \(\le\)\(2\sqrt{2}\)
Từ đó <=> (1) \(\le\)\(\sqrt{2}\)
Từ đó => P \(\sqrt[4030]{2}\)
Đạt được khi a = b = \(\sqrt{2}\)
H
0
![](https://rs.olm.vn/images/avt/0.png?1311)