Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, mình bổ sung cho đề là \(5x^2+6x-\frac{1}{3}\)( hoặc là trừ thì cũng làm tương tự :)
Ta có : \(f\left(x\right)+g\left(x\right)\)hay \(5x^2-2x+5+5x^2+6x-\frac{1}{3}=10x^2+4x+\frac{14}{3}\)
b, Ta có : \(f\left(x\right)-g\left(x\right)\)hay
\(5x^2-2x+5-5x^2-6x+\frac{1}{3}=-8x+\frac{16}{3}\)
c, Đặt \(-8x+\frac{16}{3}=0\Leftrightarrow-8\left(x-\frac{2}{3}\right)=0\Leftrightarrow x=\frac{2}{3}\)
Vậy x = 2/3 là nghiệm đa thức trên
a, Ta có : \(f\left(x\right)+g\left(x\right)\)hay \(5x^2-2x+5+5x^2-6x-\frac{1}{3}=10x^2-8x+\frac{14}{3}\)
b, Ta có : \(f\left(x\right)-g\left(x\right)\)hay \(5x^2-2x+5-5x^2+6x+\frac{1}{3}=4x+\frac{16}{3}\)
c, Đặt \(f\left(x\right)-g\left(x\right)=0\)hay \(4x+\frac{16}{3}=0\)
\(\Leftrightarrow4x=-\frac{16}{3}\Leftrightarrow x=-\frac{16}{8}=-2\)
`Answer:`
Để cho `f(1)=g(2)` thì: `2. 1^2 + a.1+4=2^2 - 5.2-b`
`<=>2.1+a+4=4-10-b`
`<=>a+6=-6-b (1)`
Để cho `f(-1)=g(5)` thì: `2.(-1)^2 +a.(-1)+4=5^2 - 5.5-b`
`<=>2.1-a+4=25-25-b`
`<=>6-a=-b (2)`
Cộng các vế tương ứng từ `(1)(2)`, ta được: `(a+b)+(6-a)=(-6-b)+(-b)`
`<=>a+6+6-a=-6-b-b`
`<=>12=-6-2b`
`<=>b=-9`
Mà `6-a=-b=>6-a=9`
`<=>a=-3`
Thay F(1) với x =1 vào thôi
G(2) cũng vậy thay x=2 vào rồi cho 2 cái bằng nhau là tìm ra a
Ta có \(f\left(1\right)=g\left(2\right)\)
=> \(2+a+4=4-20-b\)
=> \(\left(2+a+4\right)-\left(4-20-b\right)=0\)
=> \(2+a+4-4+20+b=0\)
=> \(22+a+b=0\)
=> \(a+b=-22\)(1)
và \(f\left(-1\right)=g\left(5\right)\)
=> \(2-a+4=25-25-b\)
=> \(2-a+4=-b\)
=> \(2+4=a-b\)
=> \(a-b=6\)
=> \(a=6+b\)(2)
Thế (2) vào (1), ta có: \(6+b+b=-22\)
=> \(2b=-28\)
=> \(b=-14\)
và \(a=6+b=6-14=-8\)
Ta có : \(f\left(1\right)=g\left(2\right)\)
\(\Rightarrow2^2+a+8=1^2-5-b\)
\(\Rightarrow a+8=-4-b\)
\(\Rightarrow a+b=-12\)(1)
Mặt khác : \(f\left(-1\right)=g\left(5\right)\)
\(\Rightarrow\left(-2\right)^2-a+4=5^2-5.5-b\)
\(\Rightarrow8-a=-b\)
\(\Rightarrow a=8+b\)(2)
Thay (2) vào (1), ta có : \(8+2b=12\)
\(\Rightarrow2b=4\)
\(\Rightarrow b=2\)(3)
Thay (3) vào (2), ta có : \(a=8+2=10\)
Vậy a = 10 ; b = 2
a) \(f\left(x\right)-g\left(x\right)=\left[x\left(x^2-2x+7\right)-1\right]-\left[x\left(x^2-2x-1\right)-1\right]\)
\(f\left(x\right)-g\left(x\right)=x^3-2x^2+7x-1-x^3+2x^2+x+1\)
\(f\left(x\right)-g\left(x\right)=8x\)
\(f\left(x\right)+g\left(x\right)=x\left(x^2-2x+7\right)-1+x\left(x^2-2x-1\right)-1\)
\(f\left(x\right)+g\left(x\right)=x^3-2x^2+7x-1+x^3-2x^2-x-1\)
\(f\left(x\right)+g\left(x\right)=2x^3-4x^2+6x-2\)
b) 8x=0
=> x=0
=> Nghiệm đa thức f(x)-g(x)
c) Thay \(x=-\frac{3}{2}\)vào BT f(x)+g(x) ta được :
\(2.\left(-\frac{3}{2}\right)^3-4\left(-\frac{3}{2}\right)^2+6\left(-\frac{3}{2}\right)-2\)
\(=6,75+9-9-2\)
\(=4,75\)
#H
f(1)=g(2)
<=>2.12+a.1+4=22-5.2-b
<=>6+a=-6-b
<=>a+b=-12
f(-1)=g(5)
<=>2.(-1)2-a.1+4=52-5.5-b
<=>6-a=-b
<=>a-b=6
Ta có hệ sau:\(\hept{\begin{cases}a+b=-12\\a-b=6\end{cases}}\)
Cộng vế với vế ta được: 2a=-6<=>a=-3
a+b=-12<=>b=-12-a=-12+3=-9
Vậy a=-3 b=-9
Ta có: f(1)=g(2)
\(\Rightarrow\)\(2.1^2+a.1+4=2^2-5.2-b\)
\(\Rightarrow6+a=-6-b\)
\(\Rightarrow a+12=-b\) (*)
Ta có: f(-1) = g(5)
\(\Rightarrow2.\left(-1\right)^2+a.\left(-1\right)+4=5^2-5.5-b\)
\(\Rightarrow2-a+4=-b\)
\(\Rightarrow6-a=-b\) (**)
Từ (*) và (**), ta có:
\(a+12=6-a\)
\(\Rightarrow2a=-6\)
\(\Rightarrow a=-3\)
Thay a=-3 vào biểu thức 6-a=-b, ta có:
6-(-3)=-b
\(\Rightarrow9=-b\)
\(\Rightarrow b=-9\)
Vì f (x) = 2x2 + ax + 4 nên
f (1) = 2 . 12 + a . 1 + 4 = 2 + a + 4 = 6 + a
f (-1) = 2 . ( - 1 )2 + a . ( - 1 ) + 4 = 2 - a + 4 = 6 - a
Vì g (x) = x2 - 5x - b nên
g (2) = 4 - 10 - b = - 6 - b
g (5) = 25 - 25 - b = - b
Mà f (1) = g (2) và f(-1)=g(5)
=> \(\hept{\begin{cases}6+a=-6-b\\6-a=-b\end{cases}}\)=>\(\hept{\begin{cases}6+a+6+b=0\\6-a+b=0\end{cases}}\)=> \(\hept{\begin{cases}a+b=-12\\a-b=6\end{cases}}\)
=> \(\hept{\begin{cases}a=-3\\b=-9\end{cases}}\)
Vậy ...
f(1)=g(2)
=>\(2\cdot1^2+a\cdot1+4=2^2-5\cdot2+b\)
=>a+6=b-6
=>a=b-12
f(-1)=g(5)
=>\(2\cdot\left(-1\right)^2+a\cdot\left(-1\right)+4=5^2-5\cdot5+b\)
=>-a+4+2=b
=>-a+6=b
=>-b+12+6=b
=>-2b=-18
=>b=9
=>a=9-12=-3
thay x = 1 vào f(x), có
f(1) =2.12 + 1a + 4
f(1) =2 + a + 4
f(1) =a + 6
=> f(6) =a + 6
thay x = 2 vào g(x) , có
g(2) =22 - 5.2 + b
g(2) =4 - 10 + b
g(2) =-6 + b
=> g(2) = -6 + b
thay x = -1 vào f(x), có
f(-1) =2.(-1)2 - 1a + 4
f(-1) = 2 + a + 4
f(-1) = 6 + a
=> f(-1) = 6 + a
thay x = 5 vào g(x) , có
g(5) =(5)2 - 5.(5) + b
g(5) = 25 - 25 + b
g(5) = + b
vậy g(5)= b
có f(1) = g(2)
=> a + 6 = -6 + b
=> a + b = 0
=> a = -b hoặc b = -a
có f(-1) = g(5)
=> 6 + a = b
=> 6 = b - a
=> 6 = b - (-b)
=> 6 = b + b
=> b = 3
=> a = -b = -3