Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Thực hiện phép chia đa thức, ta có:
\(P\left(x\right)=Q\left(x\right)\cdot T\left(x\right)\cdot D\left(x\right)\)
Trong đó:
\(T\left(x\right)=6x^2-\left(7+6b\right)x+7b+6b^2\)
\(D\left(x\right)=\left(a-6b^3-7b^2-12b-14\right)x+12b^2+14b+2\)
\(P\left(x\right)\) chia hết cho \(Q\left(x\right)\) khi \(D\left(x\right)=0\forall x\)
Vậy, ta có hệ phương trình:
\(\left\{\begin{matrix}a-6b^3-7b^2-12b-14=0\\12b^2+14b+2=0\end{matrix}\right.\)
Giải hệ phương trình, ta có:
\(\left\{\begin{matrix}a=3\\b=-1\end{matrix}\right.\) hay \(\left\{\begin{matrix}a=\frac{73}{6}\\b=-\frac{1}{6}\end{matrix}\right.\)
Nếu \(a=3\) thì phương trình \(P\left(x\right)=\left(6x^2-x-1\right)\left(x^2-x-2\right)=0\) có 4 nghiệm là: \(-1,2,\frac{1}{2},-\frac{1}{3}\)
Nếu \(a=\frac{73}{6}\) thì phương trình \(P\left(x\right)=\left(6x^2-6x-1\right)\left(x^2-\frac{1}{6}x-2\right)=0\) có 4 nghiệm là \(\frac{3\pm\sqrt{15}}{6},\frac{3}{2},-\frac{4}{3}.\)
a)Tac6P(x):Q(x).(6x2 ' (7 +6b)x+ 7b+6b21+ (a- 6b3 -7bz -lzb-14)x + 12bz + 14b+2 ocr1xl i Q(x) <+(a-6b3- l*-na-14)x +labz + 14b *2:0v6i Vx [a - 6b3 -7b2 -tzb-14 = o(i) el- [tzu'+14b+z=0(2) GiAi phucrng trinh (2) tadugc hai nghiQm b : - 1 'rra b = -l . 6 l^-73 Thay b:- 1 vd b=-+vio (1) a,rq. I ?=t,ho+c ]*- 6 6 lb=-l l.__1 L"--o (^ -c lu=T K6t qu6: ll -' . ; ] lb=-l'l, 1 ' lD=-; Lb Download tại: maytinhbotui.vn b) + Vdi a:3 c6 P(x) : 6xa -l* - tz* + 3x+ 2 Giii phucrng trinh duoc KrSt qu6: xr:2)x2: - t; or:l : '2 0,5; *: -l = -0,3333. 3 -4l1 + V6i u: a co P(x) :6x4 -7x3 - 12x2 + !x+ 2 6"5 GiAi phucrng trinh dugc --R.,L? K6t qu6: x1:1,1455; ve: -0,1455; n, :-i = -1,3333,xq:1 =7,5 Bei 2. (10 dicm).
2/ Ta phân tích
ax3 + bx2 + c = (x + 2)[ax2 + (b - 2a)x - 2(b - 2a)] + c + 4(b - 2a) = (x2 - 1)(ax + b) + ax + b + c
Từ đó kết hợp với đề bài ta có hệ
\(\hept{\begin{cases}c+4\left(b-2a\right)=0\\a=1\\b+c=5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=1\\b=1\\c=4\end{cases}}\)
Ta có A = (x + y)3 + z3 + kxyz - 3xy(x + y)
= (x + y + z)[(x + y)2 - (x + y)z + z2] + xy(kz - 3x - 3y)
Nhìn vào cái này ta dễ thấy là để A chia hết cho x + y + z thì k = - 3
Ta có:\(\begin{Bmatrix} x^{4}+ax^{2}+1=0 & \\x^{3}+ax+1=0 & \end{Bmatrix}\)
Giả sử phương trình có nghiệm chung là \(x_o\)
\(\begin{Bmatrix} x_0^{4}+ax_0^{2}+1=0(1) & \\x_0^{3}+ax_0 +1=0(2) & \end{Bmatrix}\)
Suy ra
\(x_0^{4}-x_0^{3}+ax_0^{2}-ax_0=0\Leftrightarrow x_0(x_0-1)(x_0^{2}+a)=0\Leftrightarrow \begin{bmatrix} x_0=0 & & \\x_0=1 & & \\x_0^2+a=0 & & \end{bmatrix}\)Thử lại thấy a=-2 phương trình sẽ có 1 nghiệm chung x=1
Giả sử nghiệm chung của hai đa thức là \(x_0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_0^4+ax_0^2+1=0\\x_0^3+ax_0+1=0\end{matrix}\right.\) \(\Rightarrow x_0^4+ax_0^2+1=x_0^3+ax_0+1\)
\(\Rightarrow x_0^4-x_0^3+ax^2_0-ax_0=0\Leftrightarrow x_0^3\left(x_0-1\right)+ax_0\left(x_0-1\right)=0\)
\(\Leftrightarrow x_0\left(x_0-1\right)\left(x_0^2+a\right)=0\) \(\Rightarrow\left[{}\begin{matrix}x_0=0\\x_0=1\\x^2_0=-a\end{matrix}\right.\)
- Thay \(x_0=0\) vào ta được \(P\left(0\right)=1\Rightarrow\) ko phải nghiệm (loại)
- Thay \(x_0=1\) vào \(\left\{{}\begin{matrix}P\left(1\right)=a+2=0\Rightarrow a=-2\\Q\left(1\right)=a+2=0\Rightarrow a=-2\end{matrix}\right.\) (nhận)
- Với \(x_0^2=-a\Rightarrow a=-x^2_0\) thay vào ta được:
\(\left\{{}\begin{matrix}P\left(x_0\right)=x_0^4+\left(-x_0^2\right)x_0^2+1=1\ne0\\Q\left(x_0\right)=x_0^3+\left(-x_0^2\right)x_0+1=1\ne0\end{matrix}\right.\) (loại)
Vậy với \(a=-2\) thì 2 đa thức có nghiệm chung \(x=1\)
\(P\left(x\right)=\left(x^2+2\right)\left(x^2-2x+5\right)+\left(a+4\right)x+b-12\)
Để \(P\left(x\right)⋮Q\left(x\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+4=0\\b-12=0\end{matrix}\right.\)
P(x)=(x2+2)(x^2−2x+5)+(a+4)x+b−12(a+4)
Để P(x)⋮Q(x)
⇔a+4=0 hoặc b-12=0
Lời giải:
Đặt $Q(x)=(x^2+mx+n)^2$
$\Leftrightarrow x^4-6x^3+ax^2+bx+1=x^4+2mx^3+x^2(m^2+2n)+2mnx+n^2$
Đồng nhất hệ số:
\(\left\{\begin{matrix} -6=2m\\ a=m^2+2n\\ b=2mn\\ 1=n^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m=-3\\ a=m^2+2n\\ b=2mn\\ n=\pm 1\end{matrix}\right.\)
Nếu $m=-3; n=1$ thì $a=11; b=-6$
Nếu $m=-3; n=-1$ thì $a=7; b=6$