K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
VK
1
B
Buddy
18 tháng 2 2020
https://i.imgur.com/opfONj4.jpg
Đúng(0)
Các câu hỏi dưới đây có thể giống với câu hỏi trên
NT
0
PA
1
HD
1
9 tháng 11 2017
Sửa đề: CMR: \(\frac{a^2}{2a+3b}+\frac{b^2}{2b+3c}+\frac{c^2}{2c+3a}\ge\frac{1}{5}\left(a+b+c\right)\)
Chứng minh BĐT phụ:
\(\frac{x^2}{m}+\frac{y^2}{n}\ge\frac{\left(x+y\right)^2}{m+n}\)\(\forall m;n>0\)Tự chứng minh
Áp dụng bđt trên, ta có
\(\frac{a^2}{2a+3b}+\frac{b^2}{2b+3c}+\frac{c^2}{2c+3a}\ge\frac{\left(a+b+c\right)^2}{2a+3b+2b+3c+2c+3a}=\frac{1}{5}\left(a+b+c\right)\)
Vậy..........
9 tháng 8 2020
a) \(=\left(x-5\right)\left(2+x+5-2x-1\right)=\left(x-5\right)\left(6-x\right)\)
9 tháng 8 2020
e) \(=\left(ab^3c^2-a^2b^2c^2\right)+\left(ab^2c^3-a^2bc^3\right)=ab^2c^2\left(b-a\right)+abc^3\left(b-a\right)=abc^2\left(b-a\right)\left(b+c\right)\)