\(\frac{a-1}{5}=\frac{b-2}{3}=\frac{c-2}{2}\)và
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2019

Từ đẳng thức \(\frac{a-1}{5}=\frac{b-2}{3}=\frac{c-2}{2}\)

\(\Rightarrow\frac{a-1}{5}=\frac{2b-4}{6}=\frac{c-2}{2}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có : 

\(\frac{a-1}{5}=\frac{b-2}{3}=\frac{c-2}{2}=\frac{2b-4}{6}=\frac{a-1+2b-4-c+2}{5+6-2}=\frac{\left(a+2b-c\right)-3}{9}\)

                                                                                                                                        \(=\frac{6-3}{9}=\frac{1}{3}\)

\(\Rightarrow a=\frac{5.1}{3}+1=\frac{5}{3}+1=\frac{8}{3};\)

\(b=\frac{3.1}{3}+2=1+2=3;\)

\(c=\frac{2.1}{3}+2=\frac{2}{3}+2=\frac{8}{3}\)

Vậy \(a=\frac{8}{3};b=3;c=\frac{8}{3}\)

6 tháng 10 2019

viết lại đề bài 

=> \(\frac{a-1}{5}=\frac{2\left(b-2\right)}{6}=\frac{c-2}{2}\)

ÁP DỤNG TÍNH CHẤT DÃU TỈ SỐ BẰNG NHAU TA CÓ:

    \(\frac{a-1}{5}=\frac{2b-4}{6}=\frac{c-2}{2}=\frac{a-1+2b-2-c-2}{5+6-2}=\frac{a+2b-c-1-2-2}{9}\)

=> \(\frac{6-1-2-2}{9}=\frac{1}{9}\)

\(\frac{a-1}{5}=\frac{1}{9}=>a=\frac{14}{9}\)

tương tự tìm b,c

                                                    * học tốt nha #

28 tháng 10 2019

Áp dụng tích chất dãy tỉ số bằng nhau ta có :

\(\frac{a-1}{5}=\frac{b-2}{3}=\frac{c-2}{2}=\frac{2b-4}{6}=\frac{a-1+2b-4-c+2}{5+6-2}=\frac{a+2b-c-3}{9}=\frac{3}{9}=\frac{1}{3}\)

\(\Rightarrow\hept{\begin{cases}a-1=\frac{1}{3}.5=\frac{5}{3}\Rightarrow a=\frac{8}{3}\\b-2=\frac{1}{3}.3=1\Rightarrow b=3\\c-2=\frac{1}{3}.2=\frac{2}{3}\Rightarrow c=\frac{8}{3}\end{cases}}\)

P/s : Lm đại :)) Sai bỏ qa :>

28 tháng 10 2019

Đặt a-1/5=b-2/3=c-2/2=k

Suy ra:a=5k+1

             b=3k+2

              c=2k+2

Thay vào ta có:

5k+1+2(3k+2)-2k-2=6(đổi dấu đúng nhé) 

(=)5k+1+6k+4-2k-2=6(=)9k+3=6(=)9k=9(=)k=1

Suy ra a=6,b=5,c=4.( cho mình nhé) 

19 tháng 8 2017

a) \(\frac{a-1}{2}=\frac{b+2}{3}=\frac{c-3}{4}=k\)

\(\Rightarrow\hept{\begin{cases}a=2k+1\\b=3k-2\\c=4k+3\end{cases}}\)thay vào \(3a-2b+c=-46\)

\(\Rightarrow3\left(2k+1\right)-2\left(3k-2\right)+4k+3=-46\)

\(\Leftrightarrow6k+3-\left(6k-4\right)+4k+3=-46\)

\(\Leftrightarrow4k+10=-46\Rightarrow4k=-56\Rightarrow k=-14\)

\(\Rightarrow\hept{\begin{cases}a=2.\left(-14\right)+1=-27\\b=3.\left(-14\right)-2=-44\\c=4.\left(-14\right)+3=-53\end{cases}}\)

Vậy \(a=-27;b=-44;c=-53\)

b) \(\frac{a}{2}=\frac{b}{5}\Rightarrow\frac{a}{6}=\frac{b}{15}\left(1\right)\)

\(\frac{b}{3}=\frac{c}{4}\Rightarrow\frac{b}{15}=\frac{c}{20}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{a}{6}=\frac{b}{15}=\frac{c}{20}\)

\(\Rightarrow\frac{a}{6}=\frac{b}{15}=\frac{c}{20}=\frac{a+b-c}{6+15-20}=\frac{12}{1}=12\)

\(\Rightarrow\hept{\begin{cases}a=12.6=72\\b=12.15=180\\c=12.20=240\end{cases}}\)

Vậy \(a=72;b=180;c=240\)

19 tháng 8 2017

a, \(\frac{a-1}{2}=\frac{b+2}{3}=\frac{c-3}{4}\)

\(\Rightarrow\frac{3a-3}{6}=\frac{2b+4}{6}=\frac{c-3}{4}=\frac{3a-3-2b-4+c-3}{6-6+4}=\frac{\left(3a-2b+c\right)-\left(3+4+3\right)}{4}=\frac{-46-10}{4}=-14\)

=> \(\hept{\begin{cases}\frac{a-1}{2}=-14\\\frac{b+2}{3}=-14\\\frac{c-3}{4}=-14\end{cases}}\Rightarrow\hept{\begin{cases}a=-27\\b=-44\\c=-53\end{cases}}\)

b) \(\hept{\begin{cases}\frac{a}{2}=\frac{b}{5}\Rightarrow\frac{a}{6}=\frac{b}{15}\\\frac{b}{3}=\frac{c}{4}\Rightarrow\frac{b}{15}=\frac{c}{20}\end{cases}\Rightarrow\frac{a}{6}=\frac{b}{15}=\frac{c}{20}}=\frac{a+b-c}{6+15-20}=\frac{12}{1}=12\)

=> a = 72, b=180, c=240

2 tháng 1 2017

\(\frac{a}{2}\)=\(\frac{b}{3}\)\(\frac{c}{4}\)=\(\frac{a+2b-c}{2+6-4}\)=\(\frac{20}{4}\)=5

\(\frac{a}{2}\)= 5 suy ra a=2.5=10

\(\frac{b}{3}\)=5 suy ra b=3.5=15

\(\frac{c}{4}\)=5 suy ra c=4.5=20

vậy a=10,b=15,c=20

2

2x-\(\frac{2}{3}\)=\(\frac{1}{3}\)

2x=\(\frac{1}{3}\)\(\frac{2}{3}\)

2x=1

x=1:2

x=\(\frac{1}{2}\)

k cho mình nhé có cơ hội thì kết bạn luôn

1) cho a,b,c là 3 số thực khác 0 thỏa mãn a+b-c/c=b+c-a/a=c+a-b/bhãy tính B= (1+b/a)(1+a/c)(1+c/b)2) CHo 2 số a, b thỏ mã a+3b= 0. tính giá trị M = \(\frac{2a+b}{a-b}=\frac{2a-b}{a+2b}\)3) Cmr b= \(2x^2-12xy+5y^2\) và c= \(-x-4y^2+12xy\) ko cùng nhận giá trị âm4) CHo p/s : d= \(\frac{n^2+3n-21}{2-n}\)a) tính d biết \(n^2-3n=0\)b) Tìm tất cả giá trị của n để d nguyên5)Tìm các số nguyên m thỏa mãn (5-m)(2m-1)>06)Tìm x,y...
Đọc tiếp

1) cho a,b,c là 3 số thực khác 0 thỏa mãn a+b-c/c=b+c-a/a=c+a-b/b
hãy tính B= (1+b/a)(1+a/c)(1+c/b)
2) CHo 2 số a, b thỏ mã a+3b= 0. tính giá trị M = \(\frac{2a+b}{a-b}=\frac{2a-b}{a+2b}\)
3) Cmr b= \(2x^2-12xy+5y^2\) và c= \(-x-4y^2+12xy\) ko cùng nhận giá trị âm
4) CHo p/s : d= \(\frac{n^2+3n-21}{2-n}\)
a) tính d biết \(n^2-3n=0\)
b) Tìm tất cả giá trị của n để d nguyên
5)Tìm các số nguyên m thỏa mãn (5-m)(2m-1)>0
6)Tìm x,y để \(\left(x^3-4x\right)^2+3x^2.|y-3|=0\)
7)Cho \(\frac{a}{b}=\frac{c}{d}\)cmr \(\frac{a^2+c^2}{b^2+c^2}=\frac{a}{b}\)
8)\(\frac{3x-2y}{37}=\frac{5y-3z}{15}=\frac{2z-5x}{2}\) và 10x-3y-2z=-4
9)Cho tỷ lệ thức \(\frac{a}{b}=\frac{c}{d}\). Cmr (a+2c)(b+d)=(a+c)(b+2d)
10)Cho x,y,z là cá số khác 0 và \(x^2=yz,y^2=xz,z^2=xy\). Cmr x=y=z
11)Tìm x biết \(\frac{x-1}{2009}+\frac{x-2}{2008}=\frac{x-3}{2007}+\frac{x-4}{2006}\)

0
5 tháng 11 2019

Bài 2/a 

Giả sử \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=k\Rightarrow\hept{\begin{cases}a=2k\\b=3k\\c=5k\end{cases}}\)

\(\Rightarrow\frac{3a-2b}{5}=\frac{2c-5a}{3}=\frac{5b-3c}{2}\)

\(\Rightarrow\frac{3\cdot2k-2\cdot3k}{5}=\frac{2\cdot5k-5\cdot2k}{3}=\frac{5\cdot3k-3\cdot5k}{2}\)

\(\Rightarrow\frac{6k-6k}{5}=\frac{10k-10k}{3}=\frac{15k-15k}{2}\)

\(\Rightarrow\frac{0}{5}=\frac{0}{3}=\frac{0}{2}=0\left(đpcm\right)\)

Bài 2/c

Có a = 2k ; b = 3k ; c = 5k

=> 2 (a - b) (b - c) = a2

=> 2 (2k - 3k) (3k - 5k) = (2k)2

=> 2 (-1)k . (-2)k = 4k2

=> 4k2 = 4k2 (đpcm)

Mình chỉ làm được có vậy thôi, mong bạn thông cảm =))

Chúc bạn học tốt =))

3 tháng 12 2019

\(\frac{3a-2b}{5}=\frac{2c-5a}{3}=\frac{5b-3c}{2}\)

\(\Rightarrow\frac{15a-10b}{25}=\frac{6c-15a}{9}=\frac{10b-6c}{4}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

 \(\frac{15a-10b}{25}=\frac{6c-15a}{9}=\frac{10b-6c}{4}=\frac{15a-10b+6c-15a+10b-6c}{25+9+4}=0\)

\(\Rightarrow\hept{\begin{cases}\frac{15a-10b}{25}=0\\\frac{6c-15a}{9}=0\end{cases}}\) \(\Rightarrow\hept{\begin{cases}3a-2b=0\\2c-5a=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}3a=2b\\2c=5a\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\frac{a}{2}=\frac{b}{3}\\\frac{c}{5}=\frac{a}{2}\end{cases}}\)

                                                                                                                   \(\Rightarrow\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\)

31 tháng 7 2020

1)

Ta có : \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)=> \(\frac{a^2}{9}=\frac{b^2}{16}=\frac{c^2}{25}\)=> \(\frac{a^2}{9}=\frac{2b^2}{32}=\frac{c^2}{25}\)

Đặt \(\frac{a^2}{9}=\frac{2b^2}{32}=\frac{c^2}{25}=k\)

=> \(\hept{\begin{cases}a^2=9k\\2b^2=32k\\c^2=25k\end{cases}}\)

=> \(a^2+2b^2-c^2=9k+32k-25k=16k\)

=> \(16k=144\)

=> \(k=9\)

Do đó \(\hept{\begin{cases}a^2=9\cdot9\\2b^2=32\cdot9\\c^2=25\cdot9\end{cases}}\Rightarrow\hept{\begin{cases}a^2=81\\b^2=144\\c^2=225\end{cases}}\Rightarrow\hept{\begin{cases}a=9\\b=12\\c=15\end{cases}}\)

2) Ta có : \(\frac{a}{5}=\frac{b}{7}=\frac{c}{9}\)=> \(\frac{a^2}{25}=\frac{b^2}{49}=\frac{c^2}{81}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{a^2}{25}=\frac{b^2}{49}=\frac{c^2}{81}=\frac{a^2+b^2-c^2}{25+49-81}=\frac{-28}{-7}=4\)

=> \(\hept{\begin{cases}\frac{a^2}{25}=4\\\frac{b^2}{49}=4\\\frac{c^2}{81}=4\end{cases}}\Rightarrow\hept{\begin{cases}a^2=100\\b^2=196\\c^2=324\end{cases}}\Rightarrow\hept{\begin{cases}a=10\\b=14\\c=18\end{cases}}\)

31 tháng 7 2020

a) đặt \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=k\Rightarrow\hept{\begin{cases}a=3k\\b=4k\\c=5k\end{cases}}\)

đặt \(a^2+2b^2-c^2=144\)

\(\Leftrightarrow\left(3k\right)^2+2\left(4k\right)^2-\left(5k\right)^2=144\)

\(\Leftrightarrow9k^2+32k^2-25k^2=144\)

\(\Leftrightarrow k^2\left(9+32-25\right)=144\)

\(\Leftrightarrow k^216=144\)

\(\Leftrightarrow k^2=9\)

\(\Leftrightarrow k=\sqrt{9}=\pm3\)

do đó 

\(\frac{a}{3}=k\Leftrightarrow\frac{a}{3}=\pm3\Rightarrow\hept{\begin{cases}a=3.3=9\\a=3.\left(-3\right)=-9\end{cases}}\)

\(\frac{b}{4}=k\Leftrightarrow\frac{b}{4}=\pm3\Rightarrow\hept{\begin{cases}b=4.3=12\\b=4.\left(-3\right)=-12\end{cases}}\)

\(\frac{c}{5}=k\Leftrightarrow\frac{c}{5}=\pm3\Rightarrow\hept{\begin{cases}c=5.3=15\\c=5.\left(-3\right)=-15\end{cases}}\)

vậy các cặp a,b,c thỏa mãn là \(\left\{a=9;b=12;c=15\right\}\left\{a=-9;b=-12;c=-15\right\}\)