Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Giả sử tồn tại a,b thỏa mãn đề bài
Ta có: \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)
\(\Rightarrow\frac{b-a}{ab}=\frac{1}{a-b}\)
\(\Rightarrow\frac{-\left(a-b\right)}{ab}=\frac{1}{a-b}\)
\(\Rightarrow-\left(a-b\right)^2=ab\)
Vì \(\left(a-b\right)^2\ge0\forall a,b\Rightarrow-\left(a-b\right)^2\le0\forall a,b\)
Mà a,b là số nguyên dương => ab > 0
=> Mâu thuẫn
=> Giả sử sai
Vậy không tồn tại a,b thỏa mãn đề
b, https://olm.vn/hoi-dap/question/1231.html
Đặt \(A=ab+bc+cd\le ab+ad+bc+cd=\left(a+c\right)\left(b+d\right)\)
Áp dụng bất đẳng thức \(xy\le\left(\frac{x+y}{2}\right)^2\) , ta có :
\(A\le\left(a+c\right)\left(b+d\right)\)
\(\Leftrightarrow A\le\left(\frac{a+b+c+d}{2}\right)^2=\left(\frac{63}{2}\right)^2=\frac{3969}{4}\)
Vậy Max \(A=\frac{3969}{4}\Leftrightarrow\hept{\begin{cases}a+c=\frac{63}{2}\\b+d=\frac{63}{2}\\a,b,c,d>0\end{cases}}\)
ta có: a/5=b/9
a/10=c/7
suy ra a/10=b/18=c/7
Gọi a/10=b/18=c/7=k
Ta lại có: a=10k