Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (15 x 24 - x) : 0,25 = 200 : 1/2
(360 - x) : 0,25 = 400
(360 - x) = 400 x 0,25
360 - x = 100
x = 360 - 100
x = 260
b) 2/5 x X + 1/2 x X = 7/8
(2/5 + 1/2) x X = 7/8
9/10 x X = 7/8
X = 7/8 : 9/10
X = 35/36
Chúc bạn học tốt !!!
\(A=\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+...+\frac{1}{9999}\)
\(A=\frac{1}{3\times5}+\frac{1}{5\times7}+\frac{1}{7\times9}+...+\frac{1}{99\times101}\)
\(A=\frac{1}{2}\times\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(A=\frac{1}{2}\times\left(\frac{1}{3}-\frac{1}{101}\right)\)
\(A=\frac{1}{2}\times\frac{98}{303}\)
\(A=\frac{49}{303}\)
A= \(\frac{1}{15}\)+ \(\frac{1}{35}\)+ ... + \(\frac{1}{9999}\)
A= \(\frac{1}{3.5}\)+ \(\frac{1}{5.7}\) + ... + \(\frac{1}{99.101}\)
2. A= \(\frac{2}{3.5}\) + \(\frac{2}{5.7}\) + ... + \(\frac{2}{99.101}\)
2.A = \(\frac{1}{3}\) - \(\frac{1}{5}\)+ \(\frac{1}{5}\)-\(\frac{1}{7}\) + ... + \(\frac{1}{99}\) - \(\frac{1}{101}\)
2.A= \(\frac{1}{3}\) - \(\frac{1}{101}\)
2.A= \(\frac{101}{303}\) - \(\frac{3}{303}\)
2.A= \(\frac{98}{303}\)
A = \(\frac{98}{303}\) : 2
A = \(\frac{49}{303}\)
Vay A=\(\frac{49}{303}\)
\((\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99})x=\frac{2}{3}\)
Đặt \(A=\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}\)
\(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\)
\(A=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{9.11}\right)\)
\(A=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{11}\right)\)
\(A=\frac{1}{2}\left(1-\frac{1}{11}\right)\)
\(A=\frac{1}{2}.\frac{10}{11}=\frac{5}{11}\)
Thay A vào biểu thức
\(\Rightarrow\frac{5}{11}x=\frac{2}{3}\)
\(\Rightarrow x=\frac{22}{15}\)
P/s: Có thể tính sai :(
\(\left[\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}\right]\times x=\frac{2}{3}\)
Trước tiên mình tính dãy có dấu ngoặc đã
Đặt : \(S=\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}\)
\(=\frac{1}{2}\left[\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+\frac{1}{9\cdot11}\right]\)
\(=\frac{1}{2}\left[\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+\frac{2}{9\cdot11}\right]\)
\(=\frac{1}{2}\left[1-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{11}\right]\)
\(=\frac{1}{2}\left[1-\frac{1}{11}\right]=\frac{1}{2}\cdot\frac{10}{11}=\frac{1\cdot10}{2\cdot11}=\frac{1\cdot5}{1\cdot11}=\frac{5}{11}\)
Thay vào biểu thức \(S=\frac{5}{11}\)ta lại có :
\(\frac{5}{11}\times x=\frac{2}{3}\)
\(\Leftrightarrow x=\frac{2}{3}:\frac{5}{11}\)
\(\Leftrightarrow x=\frac{2}{3}\cdot\frac{11}{5}\)
\(\Leftrightarrow x=\frac{22}{15}\)
Vậy \(x=\frac{22}{15}\)
\(\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+...+\frac{1}{a\cdot(a+2)}=\frac{8}{57}\)
\(\Rightarrow\frac{2}{30}+\frac{2}{70}+\frac{2}{126}+...+\frac{2}{a(a+2)}=\frac{8}{57}\)
\(\Rightarrow2\cdot(\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+...+\frac{1}{a(a+2)})=\frac{8}{57}\)
\(\Rightarrow2\cdot(\frac{1}{3}-\frac{1}{a+2})=\frac{8}{57}\)
\(\Rightarrow\frac{2}{3}-\frac{1}{a+2}=\frac{8}{57}\)
\(\Rightarrow\frac{1}{a+2}=\frac{2}{3}-\frac{8}{57}\)
Đến đây rồi bí :v
\(\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}\right).y=\frac{2}{3}\)
\(\frac{1}{2}.\left(1-\frac{1}{3}\right)+\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}\right)+\frac{1}{2}.\left(\frac{1}{5}-\frac{1}{7}\right)+\frac{1}{2}.\left(\frac{1}{7}-\frac{1}{9}\right)+\frac{1}{2}.\left(\frac{1}{9}-\frac{1}{11}\right).y=\frac{2}{3}\)
\(\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\right).y=\frac{2}{3}\)
\(\frac{1}{2}.\left(1-\frac{1}{11}\right).y=\frac{2}{3}\)
\(\left(1-\frac{1}{11}\right).y=\frac{4}{3}\)
\(\frac{10}{11}.y=\frac{4}{3}\)
\(\Rightarrow y=\frac{22}{15}\)