Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
dễ thấy B=\(\frac{2015+2016}{2016+2017}\)<1
A=\(\frac{2015}{2016}\)+\(\frac{2016}{2017}\)=1-\(\frac{1}{2016}\)+1-\(\frac{1}{2017}\)=(1+1)-(\(\frac{1}{2016}\)+\(\frac{1}{2017}\))=2-(\(\frac{1}{2016}\)+\(\frac{1}{2017}\))
vì (\(\frac{1}{2016}\)+\(\frac{1}{2017}\))<0,5+0,5=1 suy ra 2-(\(\frac{1}{2016}\)+\(\frac{1}{2017}\))>1 mà b<1suy ra A>B
Ta thấy: B=\(\frac{2015+2016}{2016+2017}\)=\(\frac{2015}{2016+2017}\)+\(\frac{2016}{2016+2017}\)
A=\(\frac{2015}{2016}\)+\(\frac{2016}{2017}\)
Mà\(\frac{2015}{2016+2017}\)<\(\frac{2015}{2016}\); \(\frac{2016}{2016+2017}\)<\(\frac{2016}{2017}\)
Suy ra: \(\frac{2015}{2016}\)+\(\frac{2016}{2017}\)>\(\frac{2015}{2016+2017}\)+\(\frac{2016}{2016+2017}\)=\(\frac{2015+2016}{2016+2017}\)
Hay A>B
\(A=\dfrac{3\cdot10^{2016}+12-10^{2017}-5}{63}\)
\(A=\dfrac{10^{2016}\cdot\left(-7\right)+7}{63}=\dfrac{\left(-7\right)\cdot\left(10^{2016}-1\right)}{63}\)
\(=\dfrac{\left(10-1\right)\cdot B}{-9}=-B\) là số tự nhiên
Ta có :
\(S=2015+\frac{2015}{1+2}+\frac{2015}{1+2+3}+...+\frac{2015}{1+2+3+..+2016}\)
\(=2015.\left(1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+..+2016}\right)\)
\(=2015.\left(1+\frac{1}{\frac{\left(2+1\right).2}{2}}+\frac{1}{\frac{\left(3+1\right).3}{2}}+...+\frac{1}{\frac{\left(2016+1\right).2016}{2}}\right)\)
\(=2015.\left(\frac{2}{2}+\frac{2}{2.\left(2+1\right)}+\frac{2}{3.\left(3+1\right)}+...+\frac{2}{2016.\left(2016+1\right)}\right)\)
\(=2015.2.\left(\frac{1}{2}+\frac{1}{2.\left(2+1\right)}+\frac{1}{3.\left(3+1\right)}+...+\frac{1}{2016.\left(2016+1\right)}\right)\)
\(=2015.2.\left(\frac{1}{2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2016.2017}\right)\)
\(=2015.2.\left(\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2016}-\frac{1}{2017}\right)\)
\(=2015.2.\left(\frac{1}{2}+\frac{1}{2}-\frac{1}{2017}\right)\)
\(=2015.2.\left(1-\frac{1}{2017}\right)\)
\(=2015.2.\frac{2016}{2017}\)
=\(\frac{2015.2.2016}{2017}\)
=\(\frac{8124480}{2017}\)
Vậy \(S=\frac{8124480}{2017}\)
Ta có:
\(A=\frac{1}{3}+\frac{1}{6}+...+\frac{2}{x\left(x+1\right)}\)
\(\Rightarrow2A=2.\left(\frac{1}{3}+\frac{1}{6}+...+\frac{2}{x\left(x+1\right)}\right)=2.\frac{2015}{2017}\)
\(=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{4030}{2017}\)
\(=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{4030}{2017}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x-1}-\frac{1}{x}+\frac{1}{x}-\frac{1}{x+1}=\frac{4030}{2017}\)
\(=\frac{1}{2}-\frac{1}{x+1}=\frac{4030}{2017}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{4030}{2017}\)
Bạn xem lại đề
theo bài ra ta có:
15+a/29+a=3/5
=>(15+a).5=(29+a).3
=>75+5a=87+3a
=>5a-3a=87-75
=>2a=12
=>a=6
vậy a=6
tick nhé
55555