\(\le\)y \(\le\)Z và x.y...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2019

kho nhi

8 tháng 4 2019

Tham khảo tại đây nhé bạn:

Câu hỏi của Trang Huyen Trinh - Toán lớp 6 - Học toán với OnlineMath

Câu hỏi của Trang Huyen Trinh - Toán lớp 6 - Học toán với OnlineMath

16 tháng 3 2017

Do \(x,y,z>0\Rightarrow xyz\ne0\)

\(\Rightarrow\dfrac{xy}{xyz}+\dfrac{yz}{xyz}+\dfrac{zx}{xyz}=1\)

\(\Rightarrow\dfrac{1}{z}+\dfrac{1}{x}+\dfrac{1}{y}=1\Rightarrow\dfrac{1}{x}< 1\Rightarrow x>1\)

\(x\le y\le z\Rightarrow\dfrac{1}{x}\ge\dfrac{1}{y}\ge\dfrac{1}{z}\)

\(\Rightarrow\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\le\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{x}=\dfrac{3}{x}\)

\(\Rightarrow1\le\dfrac{3}{x}\Rightarrow x\le3\)\(x>1\Rightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)

Nếu \(x=2\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{2}\Rightarrow\dfrac{1}{y}< \dfrac{1}{2}\Rightarrow y>2\\\dfrac{1}{y}+\dfrac{1}{z}\le\dfrac{2}{y}\Rightarrow\dfrac{2}{y}\ge\dfrac{1}{2}\Rightarrow y\le4\end{matrix}\right.\)

\(y>2\Rightarrow\left[{}\begin{matrix}y=3\\y=4\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}y=3\Rightarrow z=6\\y=4\Rightarrow z=4\end{matrix}\right.\)

Nếu \(x=3\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{2}{3}\Rightarrow\dfrac{1}{y}< \dfrac{2}{3}\Rightarrow y>\dfrac{3}{2}\\\dfrac{1}{y}+\dfrac{1}{z}\le\dfrac{2}{y}\Rightarrow\dfrac{2}{y}\ge\dfrac{2}{3}\Rightarrow y\le3\end{matrix}\right.\)

Do \(x\le y\Rightarrow\left\{{}\begin{matrix}y=3\\z=3\end{matrix}\right.\)

Vậy \(\left(x;y;z\right)=\left(3;3;3\right);\left(2;3;6\right);\left(2;4;4\right)\)

16 tháng 3 2017

giúp nha, đúng mình tick cho

16 tháng 10 2016

a)  M = { 13 ; 65 }

b)  M = { 26 ; 39 ; 52 ; 65 ; 78 ; 91 ; 104 }

c)  M = { 13 }

2 tháng 8 2016

a)

Ta có

\(\frac{x}{2}=\frac{y}{5}\Rightarrow\frac{3x}{6}=\frac{y}{5}\)

Áp dụng tc của dãy tỉ só bằng nhau

\(\Rightarrow\frac{3x}{6}=\frac{y}{5}=\frac{3x-y}{6-5}=\frac{10}{1}=10\)

=> x=2.10=20

    y=5.10=50

2 tháng 8 2016

Ta có

\(\frac{x}{2}=\frac{y}{5}\Rightarrow\frac{x^2}{4}=\frac{y^2}{25}=\frac{xy}{10}=\frac{30}{10}=3\)

\(\Rightarrow\left[\begin{array}{nghiempt}x=\sqrt{12}\\x=-\sqrt{12}\end{array}\right.\)

     \(\left[\begin{array}{nghiempt}y=\sqrt{75}\\y=-\sqrt{75}\end{array}\right.\)

Mà 2;5 cùng dấu

=> x; y cùng dấu

Vậy \(\left(x;y\right)=\left(\sqrt{12};\sqrt{75}\right);\left(-\sqrt{12};-\sqrt{75}\right)\)

18 tháng 1 2019

Dễ thấy \(VT\ge0\)

Mà đề lại cho \(VT\le0\)

Nên dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}xy=10\\yz=-15\\xz=-6\end{cases}}\)

Nhân từng vế của 3 đẳng thức trên lại được \(x^2y^2z^2=900\)

                                                                \(\Leftrightarrow xyz=\pm30\)

*Với \(xyz=30\Rightarrow\hept{\begin{cases}x=\frac{xyz}{yz}=\frac{30}{-15}=-2\\y=\frac{xyz}{xz}=\frac{30}{-6}=-5\\z=\frac{xyz}{xy}=\frac{30}{10}=3\end{cases}}\)

*Với \(xyz=-30\Rightarrow\hept{\begin{cases}x=\frac{xyz}{yz}=\frac{-30}{-15}=2\\y=\frac{xyz}{xz}=\frac{-30}{-6}=5\\z=\frac{xyz}{xz}=\frac{-30}{10}=-3\end{cases}}\)

Vậy ,,,,,,,,,,,

18 tháng 1 2019

Ta có \(\hept{\begin{cases}\left|xy-10\right|\ge0\forall x,y\\\left|yz+15\right|\ge0\forall y,z\\\left|zx+6\right|\ge0\forall z,x\end{cases}}\)=>|xy-10|+|yz+15|+|zx+6|\(\ge0\forall x,y,z\)

                                                                   mà |xy-10|+|yz+15|+|zx+6|\(\le0\)  

=>|xy-10|+|yz+15|+|zx+6| =0

<=>\(\hept{\begin{cases}\left|xy-10\right|=0\\\left|yz+15\right|=0\\\left|zx+6\right|=0\end{cases}}\)<=>\(\hept{\begin{cases}xy-10=0\\yz+15=0\\zx+6=0\end{cases}}\)<=>\(\hept{\begin{cases}xy=10\\yz=-15\\zx=-6\end{cases}}\)

Ta có:\(\frac{xy}{yz}\)=\(\frac{10}{-15}\) 

=>\(\frac{x}{z}\)=\(\frac{-2}{3}\)

=>x=\(\frac{-2}{3}z\)

Thay x vào biểu thức zx=-6 ta được :

\(\frac{-2}{3}.z^2\)=-6

z2 = 9 => z= \(\orbr{\begin{cases}3\\-3\end{cases}}\)

Với z = 3 \(\Rightarrow\)\(\hept{\begin{cases}x=-6:3=-2\\y=-15:3=-5\end{cases}}\)

Với z= -3 \(\Rightarrow\)\(\hept{\begin{cases}x=-6:\left(-3\right)=2\\y=-15:\left(-3\right)=5\end{cases}}\)

Vậy (x,y,z)={ (-2,-5,3);(2,5,3) }