K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2017

Vì p là số nguyên tố > 3 => p có dạng 3k + 1 hoặc 3k + 2 (k thuộc N)

+ Trường hợp p = 3k + 1

Nếu d chia cho 3 dư 1 => d = 3n + 1 => p + 2d = 3k + 1 + 6n + 2 = 3k + 6n + 3 chia hết cho 3 ( mâu thuẫn với p + 2d là số nguyên tố)

Nếu d chia cho 3 dư 2 => d = 3n + 2 => p + d = 3k + 1 + 3n + 2 = 3k + 3n + 3 chia hết cho 3 (mâu thuẫn)

vậy d chia hết cho 3

+ Trường hợp p = 3k + 2 . Tương tự ta có: d chia hết cho 3

=> d chia hết cho 3

Mà p, p + d là số nguyên tố => lẻ => p + d - p = d chẵn hay d chia hết cho 2.

vậy d chia hết cho 2 và 3

6 tháng 8 2017

Vì p là số nguyên tố lớn hơn 3 => p có 2 dạng: 3k+1 và 3k+2 (k thuộc n)

+) p= 3k+1

Nếu d chia cho 3 dư 1 => d=3n+1 => p+2d= 3k+1+6n+2 = 3k+6n chia hết cho 3 (mâu thuẫn với p+2d la số nguyên tố)

Nếu d chia cho 3 dư 2 => d=3n+2 => => p+d= 3k+1+3n+2=3k+3n+3 chia hết cho 3 ( mâu thuẫn)

Vậy d chia hết cho 3

+) Trường hợp d = 3k+2

Tương tự ta có d chia hết cho 3 

=> d chia hết cho 3 (1)

Vì p,d+2 là số nguyên tố => lẻ=> p+d-p=d chia hết cho 2 (chẵn) (2) 

Từ (1) và (2) 

=> d chia hết cho 6 (ĐPCM)

8 tháng 6 2015

Vì p là số nguyên tố > 3 => p có dạng 3k + 1 hoặc 3k +2 ( k thuộc N)

+) Trường hợp:  p = 3k + 1 

Nếu d chia cho 3 dư 1 => d = 3n + 1 => p + 2d = 3k + 1 + 6n + 2 = 3k + 6n + 3 chia hết cho 3 (mâu thuẫn với p+ 2d là số nguyên tố) 

Nếu d chia cho 3 dư 2 => d = 3n + 2 => p + d = 3k + 1 + 3n + 2 = 3k + 3n + 3 chia hết cho 3 (Mâu thuẫn)

Vậy d chia hết cho 3

+) Trường hợp : p = 3k + 2. Tương tự ta có: d chia hết cho 3

=> d chia hết cho 3

Mà p; p + d là số nguyên tố => lẻ => p+ d - p = d chẵn hay d chia hết cho 2

Vậy d chia hết cho cả 2 và 3 => d chia hết cho 6

8 tháng 6 2015

Giả sử tồn tại các số nguyên x,y sao cho x^2+5=y^3. 

Nếu x lẻ thì y chẵn, nhưng khi đó, x^2+5 chia 8 dư 6 còn y^3 chia hết cho 8, vô lí. 

Nếu x chẵn thì y lẻ. 
---Nếu y chia 4 dư 3 thì y^3 chia 4 dư 3, nhưng x^2+5 chia 4 dư 1, vô lí. 
---Nếu y chia 4 dư 3 thì y^2+y+1 chia 4 dư 3 
Suy ra x^2+4 =y^3 – 1 = (y – 1)(y^2+y+1) có ước nguyên tố dạng 4k+3, vô lí. 

Vậy không tồn tại các số nguyên x,y sao cho x^2+5=y^3.

3 tháng 3 2016

d, d chia 6 dư 1

(Thay thử p = 5 và d = 7 là biết)

4 tháng 1 2018

Bài 1 :

 Gọi đó là p, q, r > 3 => p, q, r không chia hết cho 3. 
=> theo nguyên lý Dirichlet trong 3 số p, q, r phải có ít nhất 2 số chia cho 3 cho cùng số dư. 
Do 2d = 2(q - p) = 2(r - q) = r - p nên 2d chia hết cho 3 => d chia hết cho 3. 
d = q - p cũng chia hết cho 2 do p, q đều lẻ 
Vậy d chia hết cho 2*3 = 6

5 tháng 3 2017

\(p>3\) nên p không chia hết cho 3 khi đó p có dạng

\(3k+1\) hoặc \(3k+2\) \(k\in N\)

\(\cdot\)) Nếu \(p=3k+1\)

Nếu d chia 3 dư 1 thì \(p+2d⋮3\left(loai\right)\)

Vì p+2d là số nguyên tố nên loại

Vậy \(p=3k+1\) thì \(d⋮3\)

Tương tự với \(p=3k+2\) thì \(d⋮3\)

Vậy \(p>3\)\(p;p+d;p+2d\) là các số nguyên tố thì \(p⋮3\left(1\right)\)

p lẻ p+d nguyên tố thì p+d lẻ nên d chẵn do đó \(d⋮2\left(2\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\) ta có \(d⋮6\)

24 tháng 11 2018

Vì P>3 nên p có dạng: 3k+1;3k+2 (k E N sao)

=> p^2 :3(dư 1)

=> p^2+2018 chia hết cho 3 và>3

nên là hợp số

2, Vì n ko chia hết cho 3 và>3

nên n^2 chia 3 dư 1

=> n^2-1 chia hết cho 3 và >3 là hợp số nên ko đồng thời là số nguyên tố 

3, Ta có:

P>3

p là số nguyên tố=>8p^2 không chia hết cho 3

mà 8p^2-1 là số nguyên tố nên ko chia hết cho 3

Ta dễ nhận thấy rằng: 8p^2-1;8p^2;8p^2+1 là 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 3

mà 2 số trước ko chia hết cho 3

nên 8p^2+1 chia hết cho 3 và >3 nên là hợp số (ĐPCM)

4, Vì p>3 nên p lẻ

=> p+1 chẵn chia hết cho 2 và>2 

p+2 là số nguyên tố nên p có dạng: 3k+2 (k E N sao)

=> p+1=3k+3 chia hết cho 3 và>3 

từ các điều trên

=> p chia hết cho 2.3=6 (ĐPCM)

22 tháng 10 2015

câu 2: ta có 8p(8p+1)(8p+2) chia hết cho 3

=>16p(8p+1)(4p+1) chia het cho 3

mà 16 không chia hết cho 3,p và 8p+1 là snt >3 nên không chia hết cho 3
=>4p+1 chia hết cho 3