\(\frac{1}{3}\), yz=\(\frac{-2}{5}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2015

Ta có: xy.yz.zx = \(\frac{1}{3}\times\frac{-2}{5}\times\frac{-3}{10}=\frac{1}{25}\)=> \(\left(xyz\right)^2=\frac{1}{25}\)

Mà \(\frac{1}{25}=\left(\frac{1}{5}\right)^2=\left(-\frac{1}{5}\right)^2\)

Nếu \(\left(xyz\right)^2=\left(\frac{1}{5}\right)^2\Rightarrow xyz=\frac{1}{5}\)

=> \(x=\frac{1}{5}:yz=\frac{1}{5}:\left(-\frac{2}{5}\right)=-\frac{1}{2}\)

=> \(y=\frac{1}{5}:xz=\frac{1}{5}:\left(-\frac{3}{10}\right)=-\frac{2}{3}\)

=> \(z=\frac{1}{5}:xy=\frac{1}{5}:\frac{1}{3}=\frac{3}{5}\)

Nếu \(\left(xyz\right)^2=\left(-\frac{1}{5}\right)^2\Rightarrow xyz=-\frac{1}{5}\)

(Tương tự trên nha ^^ )

24 tháng 7 2015

=>\(xy.yz.zx=\frac{1}{3}.\frac{-2}{5}.\frac{-3}{10}=\frac{6}{150}=\frac{1}{25}\)

=>\(x^2.y^2.z^2=\frac{1^2}{5^2}\)

=>\(\left(x.y.z\right)^2=\left(\frac{1}{5}\right)^2\)

=>\(x.y.z=\frac{1}{5}\)

=>\(x=\frac{1}{5}:\frac{-2}{5}=\frac{-1}{2}\)

=>\(y=\frac{1}{5}:\frac{-3}{10}=\frac{-2}{3}\)

=>\(z=\frac{1}{5}:\frac{1}{3}=\frac{3}{5}\)

29 tháng 9 2016

b. Ta có : xy.yz.zx=3/5.4/5.3/4

      =) x^2.y^2.z^2=9/25

     (=)    (x.y.z)^2  =9/25

    mà     (x.y.z)^2  =(3/5)^2

     (=)      x.y.z       =3/5

*Ta có xy=3/5

=)  xyz =3/5

=)3/5.z =3/5

=)    z   =3/5:3/5

(=)  z    =1

*Ta có: yz=4/5

=)  xyz =3/5

=) x.4/5=3/5

=)    x   =3/5:4/5

=)    x   =  3/4

*Ta có: zx=3/4

 =) xyz =3/5

(=) xzy =3/5

 =)3/4.y=3/5

 =)   y   =3/5:3/4

 =)   y   =4/5

Vậy x=3/4, y=4/5, z=1

17 tháng 7 2018

\(\left|x+\frac{1}{2}\right|+\left|y-\frac{3}{4}\right|+\left|z-1\right|=0\) \(0\)

<=> \(\hept{\begin{cases}x+\frac{1}{2}=0\\y-\frac{3}{4}=0\\z-1=0\end{cases}}\)

<=> \(\hept{\begin{cases}x=-\frac{1}{2}\\y=\frac{3}{4}\\z=1\end{cases}}\)

\(\left|x-\frac{3}{4}\right|+\left|\frac{2}{5}-y\right|+\left|x-y+z\right|=0\)

<=> \(\hept{\begin{cases}x-\frac{3}{4}=0\\\frac{2}{5}-y=0\\x-y+z=0\end{cases}}\)

<=>\(\hept{\begin{cases}x=\frac{3}{4}\\y=\frac{2}{5}\\\frac{3}{4}-\frac{2}{5}+z=0\end{cases}}\)

<=> \(\hept{\begin{cases}x=\frac{3}{4}\\y=\frac{2}{5}\\z=\frac{-7}{20}\end{cases}}\)

\(\left|x-\frac{2}{3}\right|+\left|x+y+\frac{3}{4}\right|+\left|y-z-\frac{5}{6}\right|=0\)

<=> \(\hept{\begin{cases}x-\frac{2}{3}=0\\x+y+\frac{3}{4}=0\\y-z-\frac{5}{6}=0\end{cases}}\)

<=> \(\hept{\begin{cases}x=\frac{2}{3}\\y=\frac{-17}{12}\\z=\frac{-9}{4}\end{cases}}\)

\(\left|x-\frac{1}{2}\right|+\left|xy-\frac{3}{4}\right|+\left|2x-3y-z\right|=0\)

<=> \(\hept{\begin{cases}x-\frac{1}{2}=0\\xy-\frac{3}{4}=0\\2x-3y-z=0\end{cases}}\)

<=> \(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{3}{4}:\frac{1}{2}=\frac{3}{2}\\z=\frac{-7}{2}\end{cases}}\)

các câu còn lại tương tự

21 tháng 7 2017

\(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\)và x + y -z = 10 

\(\frac{x}{2}=\frac{y}{3}=\frac{1}{4}.\frac{x}{2}=\frac{1}{4}.\frac{y}{3}\)\(=\frac{x}{8}=\frac{y}{12}\)

\(\frac{y}{4}=\frac{z}{5}=\frac{1}{3}.\frac{y}{4}=\frac{1}{3}.\frac{z}{5}=\frac{y}{12}=\frac{z}{15}\)

\(\Leftrightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)và x + y - z = 10 

Theo tính chất dãy tỉ số bằng nhau: 

\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)

\(\frac{x}{8}=2\Rightarrow x=2.8=16\)

*  \(\frac{y}{12}=2\Rightarrow y=2.12=24\)

\(\frac{z}{5}=2\Rightarrow z=2.5=10\)

Vậy...

21 tháng 7 2017

Ý mk nhầm chút xíu nhé! Cko sorry! 

\(\frac{z}{15}=2\Rightarrow z=2.15=30\)

... :( Xl

21 tháng 11 2018

áp dụng tính chất dãy tỉ số bằng nhau mà làm

22 tháng 11 2018

theo tính chất dãy tỉ số = ta có ;

xy\4+yz/6+zx/10=xy+yz+zx/4+6+10=60/16=3,75

do đó: xy/4=3,75 suy ra xy=3,75.4=15

         yz/6=3,75 suy ra yz=3,75.6=22,5

         zx/10=3,75 suy ra zx=3,75.10=37,5

7 tháng 2 2021

giúp mình với nhé!

8 tháng 8 2016

Ta có :

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\) ( Do đó mà \(x;y;z\)cùng dấu )

\(\Rightarrow\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}=\frac{xy}{6}=\frac{yz}{12}=\frac{xz}{8}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}=\frac{xy}{6}=\frac{yz}{12}=\frac{xz}{8}=\frac{xy+yz+xz}{6+12+8}=\frac{104}{26}=4\)

\(\frac{x^2}{4}=4\Rightarrow x\in\left\{-4;4\right\}\)

\(\frac{y^2}{9}=4\Rightarrow y\in\left\{-6;6\right\}\)

\(\frac{z^2}{16}=4\Rightarrow x\in\left\{-8;8\right\}\)

Mà x ; y ; z cùng dấu nên \(\left(x;y;z\right)\in\left\{\left(-4;-6;-8\right);\left(4;6;8\right)\right\}\)

9 tháng 9 2019

Bài 1 : Nhân vế cả ba đẳng thức ta có :

xy.yz.zx = 3.2.54

=> (x)2.(y)2.(z)2 =  324

=> (x.y.z)2= 182=(-18)2

Nếu xyz = 18  cùng với xy = 3 nên z = 6,cùng với yz = 2 thì x = 9 , cùng với zx = 54 thì y = 1/3.

Tương tự nếu xyz = -18 cùng với xy = 3 nên z = -6,cùng với yz = 2 thì x = -9 , cùng với zx = 54 thì y = -1/3.

Bài 2 :

Do 1/2x  + 3 >= 0

2,5 - 3y >= 0

=> |1/2x + 3| + |2,5-3y| = 0

Do đó x = -6 , y = 7/6