Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Phạm Ngọc Thạch - Toán lớp 6 - Học toán với OnlineMath
https://olm.vn/hoi-dap/detail/7627042571.html
Tham khảo link trên
Hk tốt !!
Sử dụng đồng dư thức nha
\(3^{10}\equiv49\left(mod1000\right)\)
\(3^{100}\equiv\left(49^5\right)^2\equiv249^2\equiv1\left(mod1000\right)\)
=> 3 chữ số tận cùng là 001
Study well
bạn kham khảo link này : https://olm.vn/hoi-dap/detail/47600715292.html
Dùng mod 1000
Sẽ tách 1000=8.125
Vì \(306^{2009^{300}}⋮8\) và (306, 125)=1
+) Ta có: \(306^{2009^{300}}\equiv0\left(mod8\right)\)(1)
+) Tìm ? : \(306^{2009^{300}}\equiv?\left(mod125\right)\)
+) \(2009^{300}\equiv9^{300}\equiv9^{10.30}\equiv1\left(mod100\right)\)
Đặt: \(2009^{300}=100t+1\)
Ta có: \(306^{2009^{300}}=306^{100t+1}=306^{100t}.306\equiv306\equiv56\left(mod125\right)\)(2)
Từ (1) và 56 chia hết cho 8 => \(306^{2009^{300}}-56\equiv0\left(mod8\right)\Rightarrow306^{2009^{300}}\equiv56\left(mod8\right)\)(3)
Từ (1), (2) và (125, 8) =1
=> \(306^{2009^{300}}\equiv56\left(mod1000\right)\)
Vậy 3 chữ số tận cùng là 056
Khồng phải từ (1) và (2) mà là từ (2) và (3)
(2) <=> \(306^{2009^{300}}-56\)chia hết cho 8
(3) <=> \(306^{2009^{300}}-56\)chia hết cho 125
Từ (2), (3) và (8, 125) => \(306^{2009^{300}}-56\)chia hết cho 1000
=>\(\text{}\text{}306^{2009^{300}}\)chia 1000 dư 56 nghĩa là \(\text{}\text{}306^{2009^{300}}\)có dạng có 3 chữ số tận cùng là 056
2^100=(2^10)^10
=(1024)^10=(1024^2)^5=(376)^10=(......376)
Tách: 1000=8.125
Ta có: \(6^{728^{32}}\equiv0\left(mod8\right)\)
Ta có: \(6^{25}=6^{5.5}\equiv26^5\equiv1\left(mod125\right)\)
\(728\equiv3\left(mod25\right)\)
=> \(728^{32}\equiv3^{32}\equiv11^4\equiv16\left(mod25\right)\)
=> Đặt: \(728^{32}=25t+16\)
tự làm tiếp nhé!
Em làm tiếp thử ạ!
\(6^{25t}.6^{16}\equiv1.81\equiv81\left(mod125\right)\)
Từ đây ta có: \(6^{728^{32}}-81\equiv0\left(mod125\right)\Leftrightarrow6^{728^{32}}-81-375\equiv0\left(mod81\right)\)
\(\Leftrightarrow6^{728^{32}}-456\equiv0\) (mod125)
Lại có \(6^{728^{32}}-456\equiv0\left(mod8\right)\)
Suy ra \(6^{728^{32}}\equiv456\left(mod1000\right)\) (vì (125;8) = 1)