Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa: p > 3
G/s không có ba chữ số nào giống nhau trong 20 số đó.
Vì các số chỉ có thể từ 0 -> 9 nên mỗi chữ số xuất hiện 2 lần
Khi đó tổng các chữ số là: 2(0 + 1 + ... + 9) = 2.45 = 90 chia hết cho 3
===> p chia hết cho 3 (vô lí)
Vậy ta có đpcm
Điều kiện của biếnx≠0,x≠−5x≠0,x≠−5 .
Ta có x2−10x+25x2−5x=x−5xx2−10x+25x2−5x=x−5x
Vì x=1,12x=1,12 thỏa mãn điều kiện của biến nên khi đó giá trị của phân thức đã cho bằng :
1,12−51,12=−3,881,12≈3,464285…1,12−51,12=−3,881,12≈3,464285…
Kết quả chính xác đến 0,001 là ≈−3,464
1b)
Đặt \(\overline{abcd}=k^2\left(k\in N;32\le k\le99\right)\)
Note : nếu k nằm ngoài khoảng giá trị ở trên thì k2 sẽ có ít hơn hoặc nhiều hơn 4 chữ số
Theo bài cho :
\(\overline{ab}-\overline{cd}=1\Rightarrow\overline{ab}=\overline{cd}+1\Rightarrow\overline{abcd}=k^2\Leftrightarrow100\cdot\overline{ab}+\overline{cd}=k^2\)
\(\Leftrightarrow100\cdot\overline{cd}+100+\overline{cd}=k^2\Leftrightarrow101\cdot\overline{cd}=k^2-100\Leftrightarrow101\overline{cd}=\left(k-10\right)\left(k+10\right)\)
\(\Rightarrow\orbr{\begin{cases}k-10⋮101\\k+10⋮101\end{cases}}\)
Mà \(\text{ }(k-10;101)=1\Rightarrow k+10⋮101\)
Lại có : \(32\le k\le99\Rightarrow42\le k+10\le109\)
\(\Rightarrow k+10=101\Rightarrow k=91\Rightarrow\overline{abcd}=91^2=8182\left(tm\right)\)
a) Chia cả 2 vế cho 2 ta được : \(x=\dfrac{\sqrt{13}}{2}\approx1,803\)
b) Chia cả 2 vế cho -5 ta được : \(x=\dfrac{1+\sqrt{5}}{-5}\approx-0,647\)
c) Chia cả 2 vế cho \(\sqrt{2}\) ta được: \(x=\dfrac{4\sqrt{3}}{\sqrt{2}}\approx4,889\)
Đặt A = 0,999...99 (20 chữ số 9)
Vì\(0< A< 1\Rightarrow A^2< A< 1\) (1)
Khai căn bậc hai cả 3 vế của (1) \(\Rightarrow A< \sqrt{A}< 1\)(2)
Từ (2) suy ra 20 chữ số thập phân của \(\sqrt{A}\)cũng là 20 chữ số 9.
tự hỏi tự trả lời kiếm l-i-k-e ak??
75675675685685656963453453452352345634546546546544756453