\(x^2+y^2;x^2-y^2;x^2\cdot y^2\)  tỉ lệ nghịch vơi 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2019

Ta có : \(x^2+y^2;x^2-y^2=x^2.y^2\) tỉ lệ nghịch với \(\frac{1}{25};\frac{1}{7};\frac{1}{256}\)( bài cho )

\(\Rightarrow\frac{x^2+y^2}{25}=\frac{x^2-y^2}{7}=\frac{x^2\cdot y^2}{256}\)

Ta có : \(\frac{x^2+y^2}{25}=\frac{x^2-y^2}{7}\)

\(\Rightarrow7\left(x^2+y^2\right)=25\left(x^2-y^2\right)\)

\(\Leftrightarrow7x^2+7y^2=25x^2-25y^2\)

\(\Leftrightarrow7x^2-25x^2=-25y^2-7y^2\)

\(\Leftrightarrow-18x^2=-32y^2\)

\(\Leftrightarrow9x^2=16y^2\)

\(\Leftrightarrow x^2=\frac{16}{9}y^2\)

Mà \(\frac{x^2-y^2}{7}=\frac{x^2.y^2}{256}\)

\(\Rightarrow\frac{\frac{16}{9}y^2-y^2}{7}=\frac{\frac{16}{9}y^2\cdot y^2}{256}\)

... Em tính ra thì tìm được \(\orbr{\begin{cases}y=4\\y=-4\end{cases}}\)

Sau đó em thử từng trường hợp:

Với y=4 thay vào biểu thức này : \(\frac{x^2+y^2}{25}=\frac{x^2-y^2}{7}\)tìm được x

Với y =-4 tương tự.

4 tháng 7 2019

Lời giải :

Theo đề bài ta có \(\frac{x}{\frac{5}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{6}{5}}\Leftrightarrow\frac{2x}{5}=\frac{3y}{4}=\frac{5z}{6}\)

Đặt \(\frac{2x}{5}=\frac{3y}{4}=\frac{5z}{6}=k\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{5k}{2}\\z=\frac{6k}{5}\end{cases}}\)

Mặt khác : \(\frac{x}{2}=\frac{z-28}{3}\)

\(\Leftrightarrow3x-2z=-56\)

\(\Leftrightarrow3\cdot\frac{5k}{2}-2\cdot\frac{6k}{5}=-56\)

\(\Leftrightarrow k=\frac{-560}{51}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{-1400}{51}\\y=\frac{-2240}{153}\\z=\frac{-224}{17}\end{cases}}\)

\(B=x+y-z=\frac{-1400}{51}+\frac{-2240}{153}-\frac{-224}{17}=\frac{-4424}{153}\)

6 tháng 10 2016

Ta có: \(\frac{3x-y}{x+y}=\frac{1}{2}\)

\(\Rightarrow2.\left(3x-y\right)=1.\left(x+y\right)\)

\(\Rightarrow6x-2y=x+y\)

\(\Rightarrow6x-x=2y+y\)

\(\Rightarrow5x=3y\)

\(\Rightarrow\frac{x}{y}=\frac{3}{5}\)

Vậy \(\frac{x}{y}=\frac{3}{5}\)

27 tháng 6 2018

1)  1/x-1/y

=y/xy-x/xy

=y-x/xy

= - (x-y)/xy

= -1 (vì x-y=xy)

2)

(x- 1/2)*(y+1/3)*(z-2)=0

=> x-1/2 = 0 hoac y+1/3=0 hoac z-2=0

th1 :x-1/2=0 => x=1/2

x+2=y+3=z+4

mà x=1/2 => y= -1/2 ; z=-3/2

th2: y+1/3=0

th3 : z-2=0

(tự làm nha)

27 tháng 6 2018

1)  Với x,y khác 0, Ta có

\(\frac{1}{x}-\frac{1}{y}=\frac{y-x}{xy}=-\left(\frac{x-y}{xy}\right)=-\left(\frac{xy}{xy}\right)=-1\)

Vậy \(\frac{1}{x}-\frac{1}{y}=-1\)

2) Ta có:

\(\left(x-\frac{1}{2}\right)\left(y+\frac{1}{3}\right)\left(z-2\right)=0\)

Trường hợp 1: x - 1/2 = 0 => x = 1/2 \(\Rightarrow\hept{\begin{cases}y=\frac{1}{2}+2-3=-\frac{1}{2}\\z=\frac{1}{2}+2-4=-\frac{3}{2}\end{cases}}\)

Trường hợp 2: y + 1/3 = 0 => y = -1/3 \(\Rightarrow\hept{\begin{cases}x=-\frac{1}{3}+3-2=\frac{2}{3}\\z=-\frac{1}{3}+3-4=-\frac{4}{3}\end{cases}}\)

Trường hợp 3: z - 2 = 0 => z = 2 \(\Rightarrow\hept{\begin{cases}x=2+4-2=4\\y=2+4-3=3\end{cases}}\)

Vậy......