Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo bài ra ta có:
a-b=2(a+b)
=>a-b=2a+2b
a=2a+3b
a-2a=3b
-a=3b
a=-3b
Vì a=-3b nên ta có:
a/b=-3b/b=-3
a/b=-3
=>a-b=-3
-3b-b=-3
-4b=-3
b=3/4
a=-9/4
1)
a) Ta có: a.b = -3.5
=> a.b = -15
Vậy tìm 2 số sao cho tích = -15 là được rồi
b) Ta có: (a-1)(b+3) = -3.7
=> (a-1)(b+3) = -21
Vậy giờ giải như bài tìm x,y (ở đây thay là a,b)
a) \(\frac{a}{5}=\frac{-3}{b}\Leftrightarrow ab=5.-3=-15\)
\(ab\) | \(-15\) | \(-15\) | \(-15\) | \(-15\) |
\(a\) | \(-1\) | \(-15\) | \(-3\) | \(-5\) |
\(b\) | \(15\) | \(1\) | \(5\) | \(3\) |
Hoặc ngược lại
b)\(\frac{a-1}{7}=\frac{-3}{b+3}\Leftrightarrow\left(a-1\right)\left(b+3\right)=-21\)
\(ab\) | \(-21\) | \(-21\) | \(-21\) | \(-21\) |
\(a-1\) | \(-1\) | \(21\) | \(-3\) | \(3\) |
\(b+3\) | \(21\) | \(-1\) | \(7\) | \(-7\) |
\(a\) | \(0\) | \(22\) | \(-2\) | \(4\) |
\(b\) | \(18\) | \(-4\) | \(4\) | \(-10\) |
Hoặc ngược lại
c)\(\frac{a}{b}=\frac{b}{c}=\frac{a}{c}\Leftrightarrow a.c^2=b^2.a\)
\(\Leftrightarrow c^2=b^2\Leftrightarrow c=b\)
Tới đây bí rồi
1
a,Ta có: \(\frac{a^2+b^2}{a^2+c^2}=\frac{bc+b^2}{bc+c^2}=\frac{b\left(c+b\right)}{c\left(c+b\right)}=\frac{b}{c}\)
b, \(\frac{a+b}{a-b}=\frac{c+a}{c-a}\Rightarrow\frac{a+b}{c+a}=\frac{a-b}{c-a}=\frac{\left(a+b\right)+\left(a-b\right)}{\left(c+a\right)+\left(c-a\right)}=\frac{2a}{2c}=\frac{a}{c}\)(1)
Mặt khác: \(\frac{a+b}{c+a}=\frac{a-b}{c-a}=\frac{\left(a+b\right)-\left(a-b\right)}{\left(c+a\right)-\left(c-a\right)}=\frac{2b}{2a}=\frac{b}{a}\)(2)
Từ (1);(2)\(\Rightarrow\frac{a}{c}=\frac{b}{a}\Leftrightarrow a^2=bc\)
c, Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{a}{b}=\frac{c}{d}=\frac{m}{n}=\frac{a+c+m}{b+d+n}\)
Ta có : \(a^2=bc\)
\(\Rightarrow\frac{a^2+b^2}{a^2+c^2}=\frac{bc+b^2}{bc+c^2}=\frac{b\left(b+c\right)}{c\left(b+c\right)}=\frac{b}{c}\)(đpcm)