Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Giải:
Vì đại lượng x tỉ lệ nghịch với đại lượng y nên ta có:
\(3x=4y\Rightarrow\frac{x}{4}=\frac{y}{3}\) và \(x+y=14\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{4}=\frac{y}{3}=\frac{x+y}{4+3}=\frac{14}{7}=2\)
+) \(\frac{x}{4}=2\Rightarrow x=8\)
+) \(\frac{y}{3}=2\Rightarrow y=6\)
Vậy cặp số \(\left(x;y\right)\) là \(\left(8;6\right)\)
Bài 2:
Giải:
Vì x và y là 2 đại lượng tỉ lệ nghịch nên ta có:
\(6x=8y\Rightarrow\frac{x}{8}=\frac{y}{6}\) và \(2x-3y=10\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{8}=\frac{y}{6}=\frac{2x}{16}=\frac{3y}{18}=\frac{2x-3y}{16-18}=\frac{10}{-2}=-5\)
+) \(\frac{x}{8}=-5\Rightarrow x=-40\)
+) \(\frac{y}{6}=-5\Rightarrow y=-30\)
Vậy cặp số \(\left(x;y\right)\) là \(\left(-40;-30\right)\)
1/ Ta có: x;y tỉ lệ nghịch với 3,4
=> \(\frac{\frac{x}{1}}{3}\)=\(\frac{\frac{y}{1}}{4}\) và x+y = 14
Áp dụng tính chất dãy tỉ số bằng nhau, Ta có:
\(\frac{\frac{x}{1}}{3}\)=\(\frac{\frac{y}{1}}{4}\)=\(\frac{x+y}{\frac{1}{3}+\frac{1}{4}}\)=\(\frac{\frac{14}{7}}{12}\)=24
\(\frac{\frac{x}{1}}{3}\)=24 => x = 8
\(\frac{\frac{y}{1}}{4}\)=24 => y = 6
Vậy x = 8 ; y =6
2/ Ta có: x;y tỉ lệ nghịch với 6;8
=> \(\frac{\frac{x}{1}}{6}\)=\(\frac{\frac{y}{1}}{8}\) và 2x-3y = 10
Áp dụng tính chất dãy tỉ số bằng nhau:
Ta có: \(\frac{\frac{x}{1}}{6}\)=\(\frac{\frac{y}{1}}{8}\)=\(\frac{2x-3y}{2.\frac{1}{6}-3.\frac{1}{8}}\)=\(\frac{\frac{10}{-1}}{24}\)=\(\frac{-5}{12}\)
\(\frac{\frac{x}{1}}{6}\)=\(\frac{-5}{12}\)=> x = \(\frac{-5}{72}\)
\(\frac{\frac{y}{1}}{8}\)=\(\frac{-5}{12}\)=> y = \(\frac{-5}{96}\)
Vậy x= \(\frac{-5}{72}\)
y = \(\frac{-5}{96}\)
3)
Vì y tỉ lệ nghịch với x theo hệ số tỉ lệ 0,8 nên xy=0,8 (1)
x tỉ lệ nghịch với z theo hệ số tỉ lệ 0,5 nên xz=0,5 (2)
Từ (1) và (2) suy ra xy/xz=0,8*0,5 hay y/z=0,4 suy ra y=0,4*z
Vậy y tỉ lệ thuận với z theo hệ số tỉ lệ là 0,4
Vì y tỉ lệ ngịch với x theo hệ số tỉ lệ là \(\frac{1}{2}\)\(\Rightarrow xy=\frac{1}{2}\)(1)
Vì x tỉ lệ thuận với z theo hệ số tỉ lệ là \(\frac{2}{3}\)\(\Rightarrow x=\frac{2}{3}z\)(2)
They (2) vào (1) ta được \(\frac{2}{3}.z.y=\frac{1}{2}\)\(\Rightarrow yz=\frac{1}{2}:\frac{2}{3}=\frac{3}{4}\)
Vậy y tỉ lệ nghịch với z theo hệ số tỉ lệ là \(\frac{3}{4}\)
a: Vì x và y tỉ lệ nghịch với 3,5 nên 3x=5y
=>x/5=y/3
Đặt x/5=y/3=k
=>x=5k; y=3k
Ta có: xy=1500
nên \(15k^2=1500\)
\(\Leftrightarrow k^2=100\)
Trường hợp 1: k=10
=>x=50; y=30
Trường hợp 2: k=-10
=>x=-50; y=-30
b: Vì x,y tỉ lệ nghịch với 3,2 nên 3x=2y
=>x/2=y/3
Đặt x/2=y/3=k
=>x=2k; y=3k
Ta có: \(x^2+y^2=325\)
\(\Leftrightarrow4k^2+9k^2=325\)
\(\Leftrightarrow k^2=25\)
Trường hợp 1: k=5
=>x=10; y=15
Trường hợp 2: k=-5
=>x=-10; y=-15
Theo bài ra ta có :
\(\frac{x}{\frac{1}{3}}=\frac{y}{\frac{1}{4}}\) và x + y = 14
Áp dụng dãy tỉ số bằng nhau ta có :
\(\frac{x}{\frac{1}{3}}=\frac{y}{\frac{1}{4}}=\frac{x+y}{\frac{1}{3}+\frac{1}{4}}=\frac{14}{\frac{7}{12}}=24\)
=> x = 24.1/3 = 8
=> y = 24.1/4 = 6