Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\frac{xy}{2y+4x}=\frac{yz}{4z+6y}=\frac{zx}{6x+2z}=\frac{x^2+y^2+z^2}{2^2+4^2+6^2}\) (2)
Xét \(x=0\Rightarrow y=z=0\Rightarrow2y+4z=0\) (vô lí)
\(\Rightarrow x\ne0;y\ne0;z\ne0\)
Khi đó từ (2) \(\Rightarrow\frac{2y+4x}{xy}=\frac{4z+6y}{yz}=\frac{6x+2z}{zx}=\frac{2^2+4^2+6^2}{x^2+y^2+z^2}\)
\(\Rightarrow\frac{2}{x}+\frac{4}{y}=\frac{4}{y}+\frac{6}{z}=\frac{6}{z}+\frac{2}{x}=\frac{2^2+4^2+6^2}{x^2+y^2+z^2}\)
\(\Rightarrow\frac{2}{x}=\frac{4}{y}=\frac{6}{z}\) và \(\frac{2^2+4^2+6^2}{x^2+y^2+z^2}=2.\frac{2}{x}\)
Đặt \(\frac{2}{x}=\frac{4}{y}=\frac{6}{z}=\frac{1}{k}\left(k\ne0\right)\)thì \(\frac{2^2+4^2+6^2}{x^2+y^2+z^2}=\frac{2}{k}\)
\(\Rightarrow x=2k;y=4k;z=6k\)và \(x^2+y^2+z^2=28k\) (3)
\(thay\) \(x=2k;y=4k;z=6k\)vào (3) ta được :
\(\left(2k\right)^2+\left(4k\right)^2+\left(6k\right)^2=28k\)
\(56k^2-28k=0\)
\(56k.\left(2k-1\right)=0\)
\(\Rightarrow k=0\)(loại)
Hoặc \(k=\frac{1}{2}\)( thỏa mãn)
Với \(k=\frac{1}{2}\)thì tìm được \(x=1;y=2;z=3\)
Vậy \(x=1;y=2;z=3\)
Ta có :
\(|x-y|+|y-z|+|z-x|=2019\)
\(\Rightarrow|x-y|+\left(x-y\right)+|y-z|+\left(y-z\right)+|z-x|+\left(z-x\right)=2019\)
Nhận xét :
\(|a|+a=0\)với \(a\le0\)
\(|a|+a=2a\)với \(a\ge0\)
\(\Rightarrow|a|+a\)luôn chẵn với \(\forall a\)
\(\Rightarrow|x-y|+\left(x-y\right)+|y-z|+\left(y-z\right)+|z-x|+\left(z-x\right)\)luôn chẵn với \(\forall x,y,z\)
mà \(2019\)lẻ
\(\Rightarrow\left(đpcm\right)\)
a
Nếu \(y=0\Rightarrow x^2=3025\Rightarrow x=55\)
Nếu \(y>0\Rightarrow3^y⋮3\)
Mà \(3026\equiv2\left(mod3\right)\Rightarrow x^2\equiv2\left(mod3\right)\) 9 vô lý
Vậy.....
b
Không mất tính tổng quát giả sử \(x\ge y\)
Ta có:
\(\frac{1}{2}=\frac{1}{2x}+\frac{1}{2y}+\frac{1}{xy}\le\frac{1}{2y}+\frac{1}{2y}+\frac{1}{y^2}=\frac{1}{y}+\frac{1}{y^2}=\frac{y+1}{y^2}\)
\(\Rightarrow y^2\le2y+2\Rightarrow\left(y^2-2y+1\right)\le3\Rightarrow\left(y-1\right)^2\le3\Rightarrow y\le2\Rightarrow y=1;y=2\)
Với \(y=1\Rightarrow\frac{1}{2x}+\frac{1}{2}+\frac{1}{x}=\frac{1}{2}\Rightarrow\frac{1}{2x}+\frac{1}{x}=0\) ( loại )
Với \(y=2\Rightarrow\frac{1}{2x}+\frac{1}{4}+\frac{1}{2x}=\frac{1}{2}\Rightarrow\frac{1}{x}=\frac{1}{4}\Rightarrow x=4\)
Vậy x=4;y=2 và các hoán vị
a, \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{5x}{15}=\frac{2y}{8}=\frac{5x-2y}{15-8}=\frac{28}{7}=4\)
=> x = 4.3 = 12
y = 4.4 = 16
b, \(x:2=y:\left(-5\right)\Rightarrow\frac{x}{2}=\frac{y}{-5}=\frac{x-y}{2-\left(-5\right)}=\frac{-7}{7}=-1\)
=> x = (-1).2 = -2
y = (-1)(-5) = 5
c, \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\)
\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\)
\(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-10}=\frac{10}{10}=1\)
=> x = 8
y =12
z = 15
Ta có \(\frac{x}{2}=\frac{y}{4}\Rightarrow\left(\frac{x}{2}\right)^2=\left(\frac{y}{4}\right)^2\Rightarrow\frac{x^2}{4}=\frac{y^2}{16}\)
Áp dụng tính chất dãy của các tỉ lệ thức, ta có:
\(\frac{x^2}{4}=\frac{y^2}{16}\Rightarrow\frac{x^2}{4}.\frac{y^2}{16}=\frac{y^2}{16}.\frac{y^2}{16}\Rightarrow\frac{x^2y^2}{64}=\frac{y^4}{256}\Rightarrow\frac{2}{64}=\frac{y^4}{256}\)
\(\Rightarrow y^4=8\Rightarrow y^2=\sqrt{8}\Rightarrow\orbr{\begin{cases}y=\sqrt{\sqrt{8}}\Rightarrow x=\frac{\sqrt{\sqrt{8}}}{2}\\y=-\sqrt{\sqrt{8}}\Rightarrow x=\frac{-\sqrt{\sqrt{8}}}{2}\end{cases}}\)
Áp dụng t/c của dãy tỉ số = nhau ta có:
\(\frac{x}{2}=\frac{y}{4}\Rightarrow\frac{x^2.y^2}{2^2.4^2}=\frac{1}{8}\)
\(\frac{x}{2}=\frac{1}{8}\Rightarrow x=\frac{1}{8}.2=\frac{1}{4}\)
\(\frac{y}{4}=\frac{1}{8}\Rightarrow y=4\cdot\frac{1}{8}=\frac{1}{2}\)
a. Từ giả thiết ta có x > y.
\(2^x-2^y=2^4\Rightarrow2^y\left(2^{x-y}-1\right)=2^4\). Do \(2^{x-y}-1\) không chia hết cho 2 với mọi x khác y nên để thỏa mãn đẳng thức trên thì \(2^{x-y}-1=1\Rightarrow x-y=1\)
Khi đó \(2^y=2^4\Rightarrow y=4\Rightarrow x=5.\)
b . Do vai trò x, y như nhau nên giả sử \(x\ge y.\)
\(2^x+2^y=2^4\Rightarrow2^y\left(2^{x-y}+1\right)=2^4\) Lập luận tương tự ta có \(2^{x-y}+1=1\Rightarrow x=y\).
Khi đó \(2.2^y=2^4\Rightarrow y=3\Rightarrow x=3.\)
Với \(x>0\Rightarrow60^x=6^x\cdot10^x\)tận cùng bằng 0, do đó \(60^x+48\)tận cùng bằng 8. Điều này vô lí vì \(60^x+48=y^2\)là SCP nên không thể tận cùng bằng 2,3,7,8.
Với \(x=0\), ta có \(y^2=49\Leftrightarrow y=7\)(y là STN nên y>0)
Vậy \(x=0;y=7\)
+, Nếu x = 2 => 2^2-2y^2 = 1
=> 2y^2 = 4-1-3
=> ko tồn tại y
+, Nếu x > 2 => x lẻ
=> x^2 là số chính phương lẻ => x^2 chia 8 dư 1
=> 2y^2 = x^2-1 chia hết cho 8
=> y^2 chia hết cho 4
=> y chia hết cho 2
=> y=2 ( vì y là số nguyên tố )
=> x^2-2.2^2 =1
=> x^2-8=1
=> x^2=1+8=9
=> x=3 ( vì x là số nguyên tố )
Vậy x=3 và y=2
Tk mk nha