Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 1:
+nếu \(p=2\Rightarrow p+10=12;p+14=16\)không phải số NT => loại
+nếu \(p=3\Rightarrow p+10=13;p+14=17\)là số NT => thỏa mãn
+ nếu \(p>3\), vì p là số NT nên p có dạng \(3k+1;3k+2\)
- với \(p=3k+1\Rightarrow p+14=3k+15⋮3\Rightarrow\)không phải số NT => loại
- với \(p=3k+2\Rightarrow p+10=3k+12⋮3\Rightarrow\)không phải số NT => loại
vậy p=3
1) +) Nếu cả hai số nguyên tố đều > 3 => 2 số đó lẻ => tổng và hiệu của chúng là số chẵn => Loại
=> Trong hai số đó có 1 số bằng 2. gọi số còn lại là a
+) Nếu a = 3 : ta có 3 + 2 = 5 ; 3 -2 = 1, 1 không là số nguyên tố => Loại
+) Nếu > 3 thì có thể có dạng: 3k + 1 ( k \(\in\)N*) hoặc 3k + 2 (k \(\in\) N*)
Khi a = 3k + 1 => a+ 2 = 3k + 3 = 3.(k + 1) là hợp số với k \(\in\) N* => Loại
Khi a = 3k + 2 => a + 2 = 3k + 4 ; a - 2 = 3k . 3k; 3k + 4 đều là số nguyên tố với k = 1 . Với k > 1 thì 3k là hợp số nên Loại
Vậy a = 3. 1+ 2 = 5
Vậy chỉ có 2 số 2;5 thỏa mãn
trước hết cần chú ý rằng mọi số tự nhiên đều viết được dưới 1 trong 3 dạng: 3k, 3k +1 hoặc 3k +2(với k là số tự nhiên)
+) nếu p = 3k vì p là số nguyên tố nên k = 1 => p = 3 => p+10 = 13 là số nguyên tố; p+14 = 17 là số nguyên tố (1)
+) nếu p = 3k +1 => p +14 = 3k+1+14 = 3k+15 = 3(k+5) chia hết cho 3 và lớn hơn 3 nên là hợp số (loại vì không thỏa mẫn điều kiện đề bài) (2)
+) Nếu p=3k+2 => p+10 = 3k+2+10 = 3k+12 = 3(k+4) chia hết cho 3 và lớn hơn 3 nên là hợp số (loại vì không thỏa mẫn điều kiện đề bài) (3)
từ (1), (2), (3) suy ra p=3 là giá trị cần tìm.
neu p=2 thi p+10=12 , la hop so(loai)
neu p=3 thi p+10 và p+14 deu la so nguyen to (chon)
neu p >3 thi p ko chia het cho 3 , suy ra p co dang 3k+1;3k+2 ( k thuoc N)
- neu p=3k+1 thi p+14=3k+15 , chia het cho 3, la hop so(loai)
- neu p=3k+2 thi p+10=3k+12 , chia het cho 3 , la hop so (loai)
Vậy p=3
- Để tìm hai số tự nhiên a và b thoả mãn a + b = 810 và ước chung lớn nhất của chúng bằng 45, ta có thể sử dụng phương pháp giải hệ phương trình. Gọi UCLN(a, b) là ước chung lớn nhất của a và b.
Vì UCLN(a, b) = 45, ta có thể viết a = 45x và b = 45y, với x và y là các số tự nhiên. Thay vào phương trình a + b = 810, ta có 45x + 45y = 810, hay x + y = 18.
Bây giờ ta cần tìm hai số tự nhiên x và y thoả mãn x + y = 18. Có nhiều cách để làm điều này, ví dụ như x = 9 và y = 9. Khi đó, a = 45x = 45 * 9 = 405 và b = 45y = 45 * 9 = 405.
Vậy, hai số tự nhiên a và b là 405 và 405.
- Để tìm hai số nguyên tố p và q thoả mãn p > q và p + q cũng như p - q đều là số nguyên tố, ta cần kiểm tra các số nguyên tố và tìm hai số thoả mãn yêu cầu.
Có nhiều cách để làm điều này, ví dụ như kiểm tra từng số nguyên tố theo thứ tự tăng dần và kiểm tra điều kiện p + q và p - q cũng là số nguyên tố.
Ví dụ:
- Kiểm tra số nguyên tố đầu tiên là 2. Ta sẽ thử p = 3 và q = 2. Khi đó, p + q = 3 + 2 = 5 là số nguyên tố và p - q = 3 - 2 = 1 không là số nguyên tố. Không thoả mãn yêu cầu.
- Tiếp theo, kiểm tra số nguyên tố thứ hai là 3. Ta sẽ thử p = 5 và q = 3. Khi đó, p + q = 5 + 3 = 8 không là số nguyên tố. Không thoả mãn yêu cầu.
- Tiếp tục kiểm tra các số nguyên tố tiếp theo. Cứ tiếp tục thử cho đến khi tìm được hai số thoả mãn yêu cầu.
Lưu ý rằng việc tìm hai số nguyên tố p và q thoả mãn yêu cầu là một vấn đề tương đối phức tạp và không có một cách giải đơn giản. Ta cần kiểm tra và thử nghiệm để tìm được kết quả.