\(\dfrac{a}{5}=\dfrac{b}{4}\)và \(a^2-b^2...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\left[a,b\right]\in\varnothing\)\(\left[a=\frac{4i}{3},b=\frac{5i}{3}\right]\)

\(\Rightarrow\left[a=-\frac{4i}{3},b=-\frac{5i}{3}\right]\)

\(\Rightarrow\text{Không tồn tại nghiệm nào thỏa mãn.}\)

15 tháng 11 2018

\(\frac{a}{5}=\frac{b}{4}\Rightarrow\frac{a^2}{25}=\frac{b^2}{16}\)

áp dụng t.c dãy tỉ số bằng nhau ta có:

\(\frac{a^2}{25}=\frac{b^2}{16}=\frac{a^2-b^2}{25-16}=\frac{1}{9}\)

\(\frac{a^2}{25}=\frac{1}{9}\Rightarrow a^2=\frac{25}{9}\Rightarrow a=\pm\frac{5}{3}\)

\(\frac{b^2}{16}=\frac{1}{9}\Rightarrow b^2=\frac{16}{9}\Rightarrow b=\pm\frac{4}{3}\)

Vậy \(a=\frac{5}{3},b=\frac{4}{3}\)hay \(a=-\frac{5}{3},b=-\frac{4}{3}\)

2 tháng 10 2017

\(a)2:\left(\dfrac{1}{2}-\dfrac{2}{3}\right)^3=2:\left(\dfrac{-1}{6}\right)^3=2:\dfrac{-1}{216}=2.\left(-216\right)=-432\)

\(\left(1+\dfrac{2}{3}-\dfrac{1}{4}\right).\left(\dfrac{4}{5}-\dfrac{3}{4}\right)^2\)

\(=\left(\dfrac{1}{3}-\dfrac{1}{4}\right).\left(\dfrac{1}{20}\right)^2\)

\(=\dfrac{1}{12}.\dfrac{1}{400}=\dfrac{1}{4800}\)

chúc bạn học tốt

4 tháng 11 2018

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\) \(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

a/ \(VT=\dfrac{a+b}{b}=\dfrac{bk+b}{b}=\dfrac{b\left(k+1\right)}{b}=k+1=\left(1\right)\)

\(VP=\dfrac{c+d}{d}=\dfrac{dk+d}{d}=\dfrac{d\left(k+1\right)}{d}=k+1\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Leftrightarrow\dfrac{a+b}{b}=\dfrac{c+d}{d}\)

b/ \(VT=\dfrac{a}{a-b}=\dfrac{bk}{bk-b}=\dfrac{bk}{b\left(k-1\right)}=\dfrac{k}{k-1}\left(1\right)\)

\(VP=\dfrac{c}{c-d}=\dfrac{dk}{dk-d}=\dfrac{dk}{d\left(k-1\right)}=\dfrac{k}{k-1}\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Leftrightarrow\dfrac{a}{a-b}=\dfrac{c}{c-d}\)

c/ \(VT=\dfrac{2a-5b}{2c-5d}=\dfrac{2bk-5b}{2dk-5d}=\dfrac{b\left(2k-5\right)}{d\left(2k-5\right)}=\dfrac{b}{d}\left(1\right)\)

\(VP=\dfrac{3a+4b}{3c+4d}=\dfrac{3bk+4b}{3dk+4d}=\dfrac{b\left(3k+4\right)}{d\left(3k+4\right)}=\dfrac{b}{d}\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Leftrightarrow\dfrac{2a-5b}{2c-5đ}=\dfrac{3a+4b}{3c+4d}\)

d/ \(VT=\dfrac{a^2-c^2}{b^2-d^2}=\dfrac{\left(bk\right)^2-\left(dk\right)^2}{b^2-k^2}=\dfrac{k^2\left(b^2-d^2\right)}{b^2-d^2}=k^2\left(1\right)\)

\(VP=\dfrac{ac}{bd}=\dfrac{bk.dk}{bd}=k^2\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Leftrightarrow\dfrac{a^2-c^2}{b^2-d^2}=\dfrac{ac}{bd}\)

4 tháng 11 2018

Hình như phải là cho \(\dfrac{a}{b}=\dfrac{c}{d}\) chứ

30 tháng 6 2017

1) Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{2010}=\dfrac{2010}{a}=\dfrac{a+b+c+2010}{b+c+2010+a}=1\)

\(\dfrac{2010}{a}=1\Rightarrow a=2010\);

\(\dfrac{c}{2010}=1\Rightarrow c=2010\);

\(\dfrac{b}{c}=1\Rightarrow\dfrac{b}{2010}=1\Rightarrow b=2010\).

Vậy (a, b, c) = (2010; 2010; 2010)

3)

a) \(A=\sqrt{x+24}+\dfrac{4}{7}\)

Có: \(\sqrt{x+24}\ge0\forall x\in R\)

\(\Rightarrow\sqrt{x+24}+\dfrac{4}{7}\ge\dfrac{4}{7}\forall x\in R\)

\(\Rightarrow A\ge\dfrac{4}{7}\forall x\in R\)

Đẳng thức xảy ra \(\Leftrightarrow\sqrt{x+24}=0\Rightarrow x+24=0\Rightarrow x=-24\)

Vậy GTNN của \(A=\dfrac{4}{7}\Leftrightarrow x=-24\)

b) \(B=\sqrt{2x+\dfrac{4}{13}}-\dfrac{13}{191}\)

Có: \(\sqrt{2x+\dfrac{4}{13}}\ge0\forall x\in R\)

\(\Rightarrow\sqrt{2x+\dfrac{4}{13}}-\dfrac{13}{191}\ge-\dfrac{13}{191}\forall x\in R\)

\(\Rightarrow B\ge-\dfrac{13}{191}\forall x\in R\)

Đẳng thức xảy ra \(\Leftrightarrow\sqrt{2x+\dfrac{4}{13}}=0\)

\(\Rightarrow2x+\dfrac{4}{13}=0\)

\(\Rightarrow2x=-\dfrac{4}{13}\)

\(\Rightarrow x=-\dfrac{2}{13}\)

Vậy GTNN của \(B=-\dfrac{13}{191}\Leftrightarrow x=-\dfrac{2}{13}\)

4)

a) \(A=-\sqrt{x+\dfrac{5}{41}}+\dfrac{7}{12}\)

Có: \(\sqrt{x+\dfrac{5}{41}}\ge0\forall x\in R\)

\(\Rightarrow-\sqrt{x+\dfrac{5}{41}}\le0\forall x\in R\)

\(\Rightarrow-\sqrt{x+\dfrac{5}{41}}+\dfrac{7}{12}\le\dfrac{7}{12}\forall x\in R\)

\(\Rightarrow A\le\dfrac{7}{12}\forall x\in R\)

Đẳng thức xảy ra \(\Leftrightarrow\sqrt{x+\dfrac{5}{41}}=0\)

\(\Rightarrow x+\dfrac{5}{41}=0\)

\(\Rightarrow x=-\dfrac{5}{41}\)

Vậy GTLN của \(A=\dfrac{7}{12}\Leftrightarrow x=-\dfrac{5}{41}\)

b) \(B=\dfrac{-5}{13}-\sqrt{x-\dfrac{2}{3}}\)

Có: \(\sqrt{x-\dfrac{2}{3}}\ge0\forall x\in R\)

\(\Rightarrow-\sqrt{x-\dfrac{2}{3}}\le0\forall x\in R\)

\(\Rightarrow\dfrac{-5}{13}-\sqrt{x-\dfrac{2}{3}}\le\dfrac{-5}{13}\forall x\in R\)

\(\Rightarrow B\le\dfrac{-5}{13}\forall x\in R\)

Đẳng thức xảy ra \(\Leftrightarrow\sqrt{x-\dfrac{2}{3}}=0\)

\(\Rightarrow x-\dfrac{2}{3}=0\)

\(\Rightarrow x=\dfrac{2}{3}\)

Vậy GTLN của \(B=\dfrac{-5}{13}\Leftrightarrow x=\dfrac{2}{3}\)

1 tháng 7 2017

làm giup minh bai 2 luon nha

khocroi

18 tháng 11 2017

a)x=3

28 tháng 12 2018

4/ \(\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{y}{4}\\\dfrac{y}{5}=\dfrac{z}{6}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{15}=\dfrac{y}{20}\\\dfrac{y}{20}=\dfrac{z}{24}\end{matrix}\right.\Leftrightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{24}=k\) (đặt k)

Suy ra \(x=15k;y=20k;z=24k\)

Thay vào,ta có:

\(M=\dfrac{2.15k+3.20k+4.24k}{3.15k+4.20k+5.24k}=\dfrac{186k}{245k}=\dfrac{186}{245}\)

28 tháng 12 2018

3. \(b^2=ac\Rightarrow\dfrac{a^2+b^2}{b^2+c^2}=\dfrac{a^2+ac}{ac+c^2}=\dfrac{a\left(a+c\right)}{c\left(a+c\right)}=\dfrac{a}{c}^{\left(đpcm\right)}\)

3 tháng 4 2017

Câu 1

\(\left\{{}\begin{matrix}7A,7B\in N\\7B=7A+5\\\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}7B>7A\\\dfrac{7A}{7B}=\dfrac{8}{9}\end{matrix}\right.\)\(\dfrac{7A}{7B}=\dfrac{8}{9}\Rightarrow\dfrac{7A}{8}=\dfrac{7B}{9}=\dfrac{7B-7A}{9-8}=7B-7A=5\)

\(\Rightarrow\left\{{}\begin{matrix}7A=8.5=40\left(emhs\right)\\7B=9.5=45\left(emhs\right)\end{matrix}\right.\)

3 tháng 4 2017

Câu2

Phần a

Tạm hiểu A=a {chuẩn A\(\ne a\)} vớ đề này hiểu giống nhau

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{\left(a-b\right)}{c-d}=\dfrac{\left(a+b\right)}{c+d}\)

\(\dfrac{a}{c}=\dfrac{b}{d}\Rightarrow\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{\left(a-b\right)\left(a+b\right)}{\left(c-d\right)\left(c+d\right)}=\dfrac{a}{c}\dfrac{b}{d}=\dfrac{ab}{cd}\)

phầnb

\(\dfrac{a+b}{c}=\dfrac{b+c}{a}=\dfrac{c+a}{b}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\)

\(M=\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)=\left(\dfrac{a+b}{b}\right)\left(\dfrac{b+c}{c}\right)\left(\dfrac{a+c}{a}\right)\)\(M=\left(\dfrac{a+b}{c}\right)\left(\dfrac{b+c}{a}\right)\left(\dfrac{a+c}{b}\right)=2.2.2=8\)

28 tháng 10 2017

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=t\) \(\Rightarrow a=bt\);\(c=dt\)

rồi bạn thế vào điều phải chứng minh là ra

29 tháng 10 2017

Bn lm chi tiết từng bài giúp mk đc k

10 tháng 8 2018

\(xy-3x-y=6\)

\(=>xy+3x-y-3=6-3\)

\(=>x\left(y+3\right)-\left(y+3\right)=3\)

\(=>\left(y+3\right)\left(x-1\right)=3\)

y+3 -1 3 1 -3
x-1 -3 1 3 -1

y+3 -1 3 -3 1
y -4 -1 -7 -3

x-1 -3 1 3 -1
x -2 2 4 0

31 tháng 7 2018

Bài 1:

a) ta có: \(\frac{x-1}{5}=\frac{y-2}{3}=\frac{z-2}{2}=\frac{2y-4}{6}\)

ADTCDTSBN

có: \(\frac{x-1}{5}=\frac{2y-4}{6}=\frac{z-2}{2}=\frac{x-1+2y-4-z+2}{5+6-2}\)\(=\frac{\left(x+2y-z\right)-\left(1+4-2\right)}{9}=\frac{6-3}{9}=\frac{3}{9}=\frac{1}{3}\)

=>...

bn tự tính típ nhé!

b) ta có: \(\frac{x}{y}=\frac{2}{3}\Rightarrow\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x^2}{4}=\frac{y^2}{9}\)

ADTCDTSBN

có: \(\frac{x^2}{4}=\frac{y^2}{9}=\frac{x^2+y^2}{4+9}=\frac{52}{13}=4\)

=>...

31 tháng 7 2018

Bài 2:

a) ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)

\(\Rightarrow\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a+b}{b}=\frac{c+d}{b}\left(đpcm\right)\)

b) ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{ac}{bd}\) (*)

mà \(\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\)

Từ (*) \(\Rightarrow\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\left(đpcm\right)\)