Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi số cần tìm là abc .
ta có :
ab ; bc là lập thành các số chính phương .
các số chính phương có 2 chữ số :
16 ; 25 ; 36 ; 49 ; 64 ; 81 .
tách dãy số trên thành từng cặp mà chữ số hàng đơn vị của số thứ nhất bằng hàng chục của số thứ 2 , ta có :
36 và 64
81 và 16
16 và 64
mà 36 và 64 không thỏa mãn yêu cầu vì 64 : 36 = 2
81 và 16 cũng không thỏa mãn , vậy chỉ có 16 và 64
số này là :
164
đ/s : 164
2 chữ số đầu là số có 2 chữ số là M=10a+b và 4M<100<==>M<25==>M=16
Thấy 4M=64 cũng là số chính phương nên chỉ có duy nhất 1 số là 164.
Gọi số cần tìm là \(\overline{abc}\) (a,b,c \(\in N\), 10 > a,b,c \(\ge0\))
TH1: \(\overline{ab}=4\overline{bc}\)
=> \(10a+b=40b+4c\)
=> \(10a=39b+4c\)
Mà b\(\ge1,c\ge0\) => \(39b+4c\ge39\)
=> 10a \(\ge39\)
=> a \(\ge4\)
Do \(\overline{ab}\) là số chính phương
=> \(\overline{ab}\in\left\{49;64;81\right\}\)
- Với \(\overline{ab}=49\) => \(\left\{{}\begin{matrix}a=4\\b=9\end{matrix}\right.\) => 4c = -311 (loại)
- Với \(\overline{ab}=64=>\left\{{}\begin{matrix}a=6\\b=4\end{matrix}\right.\) => 4c = - 96 (loại)
- Với \(\overline{ab}=81=>\left\{{}\begin{matrix}a=8\\b=1\end{matrix}\right.\) => 4c = 41 => c = \(\dfrac{41}{4}\) (loại)
TH2: \(4\overline{ab}=\overline{bc}\)
=> 40a + 4b = 10b + c
=> 40a = 6b + c
Mà \(b\le9;c\le9\)
=> 6b + c \(\le63\)
=> 40a \(\le63\)
=> a \(\le1\)
=> a = 1
Mà \(\overline{ab}\) là số chính phương
=> \(\overline{ab}\) = 16
=> b = 6
=> c = 4
Vậy số cần tìm là 164
tìm 3 chữ số đầu là nếu thử la 32^2=1024 loai
suy ra 3 chữ số đầu là 31^2 =961
giờ thì tìm 2 chữ số còn lại thử là 5^3 =125 loại
suy ra 2 chữ số cuối là 4^3=64 chọn
vậy số cần tìm là 96164
chuân 100% đó
Gọi số cần tìm là abcde
Ta tìm 3 chữ số đầu nếu ta thử là 322=1024(l)
Vậy 3 chữ số đầu là 312=961
Ta tìm 2 chữ số cuối nếu ta thu là 53 =125(l)
=> 2 chữ số cuối là: 43=64(tm)
Vậy số cần tìm là: 96164