Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: x2 – 2x + 1 = 6y2 -2x + 2
=> x2 – 1 = 6y2 => 6y2 = (x-1).(x+1) chia hết cho 2 , do 6y2 chia hết cho 2
Mặt khác x-1 + x +1 = 2x chia hết cho 2 => (x-1) và (x+1) cùng chẵn hoặc cùng lẻ.
Vậy (x-1) và (x+1) cùng chẵn => (x-1) và (x+1) là hai số chẵn liên tiếp
(x-1).(x+1) chia hết cho 8 => 6y2 chia hết cho 8 => 3y2 chia hết cho 4 => y2 chia hết cho 4 => y chia hết cho 2
y = 2 ( y là số nguyên tố) , tìm được x = 5.
đúng mình cái nhe, bài này hơi khó
Ta có: x2 – 2x + 1 = 6y2 -2x + 2
=> x2 – 1 = 6y2 => 6y2 = (x-1).(x+1) chia hết cho 2 , do 6y2 chia hết cho 2
Mặt khác x-1 + x +1 = 2x chia hết cho 2 => (x-1) và (x+1) cùng chẵn hoặc cùng lẻ.
Vậy (x-1) và (x+1) cùng chẵn => (x-1) và (x+1) là hai số chẵn liên tiếp
(x-1).(x+1) chia hết cho 8 => 6y2 chia hết cho 8 => 3y2 chia hết cho 4 => y2 chia hết cho 4 => y chia hết cho 2
y = 2 ( y là số nguyên tố) , tìm được x = 5.
Ta có : x^2 -1 = 6y^2
=> (x-1)(x+1)=6y^2
x-1;x+1 có ít nhất 1 số chẵn mà x-1+x+1=2x ( số chẵn)
=> (x-1)(x+1) là tích 2 số chẵn liên tiếp
=> (x-1)(x+1) chia hết cho 8
=> 6y^2 chia hết cho 8 => 3y^2chia hết cho 4
Mà (3; 4)=1 nên y^2 chia hết cho 4.
Vì y là số nguyên tố nên y=2. => x= 5
Ta có : x2 - 2x + 1 = 6y2 - 2x + 2
\(\Rightarrow\)x2 - 1 = 6y2 \(\Rightarrow\)6y2 = ( x-1 ).( x+1 ) chia hết cho 2 , do 6y2 chia hết cho 2 .
Khác , x-1 + x+1 = 2x chia hết cho 2 \(\Rightarrow\)( x-1 ) và ( x+1 ) cùng chẵn hoặc là lẻ .
Vậy ( x-1 ) và ( x+1 ) cùng chẵn \(\Rightarrow\)( x-1 ) và ( x+1 ) là hai số chẵn liên tiếp .
( x-1 ).( x+1 ) chia hết cho 8 \(\Rightarrow\)6y2 chia hết cho 8 \(\Rightarrow\)3y2 chia hết cho 4 \(\Rightarrow\)y2 chia hết cho 2 .
y = 2 ( y là số nguyên tố ) , tìm được x = 5
Ta có: \(\hept{\begin{cases}|x|\ge0\\|y|\ge0\end{cases}\forall x;y}\)
Vì x;y là số nguyên nên x, y>0
Theo bài ra ta có:x=6y(1)
=> x-y=60(2)
(1)(2) => 6y-y=60
=> 5y=60
=> y=12
=> x=12 x 6=72
Vậy x=72; y=12
Ta có: x2 - 2x + 1 = 6y2 - 2x + 2.
=> x2 - 1 = 6y2 => 6y2 = (x - 1) . (x + 1) chia hết cho 2, do 6y2 chai hết cho 2.
Mặt khác x - 1 + x + 1 = 2x chia hết cho 2 => (x - 1) và (x + 1) cùng chẵn hoặc cùng lẻ.
Vậy (x - 1) và (x + 1) cùng chẵn => (x - 1) và (x + 1) là hai số chẵn liên tiếp.
(x - 1) . (x + 1) chia hết cho 8 => 6y2 chia hết cho 8 => 3y2 chia hết cho 4 => y2 chia hết cho 4 => y chia hết cho 2
Từ đó suy ra y = 2 (Vì y là số nguyên tố), tìm được x = 5.