Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Với \(x>0;x\ne1\)
\(P=\left(\frac{\sqrt{x}}{2}-\frac{1}{2\sqrt{x}}\right)^2\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{\sqrt{x}+1}{\sqrt{x}-1}\right)\)
\(=\left(\frac{x-1}{2\sqrt{x}}\right)^2\left(\frac{x-2\sqrt{x}+1-x-2\sqrt{x}-1}{x-1}\right)\)
\(=\frac{x^2-2x+1}{4x}.\frac{-4\sqrt{x}}{x-1}=\frac{1-x}{\sqrt{x}}\)
Thay x = 4 => \(\sqrt{x}=2\)vào P ta được :
\(\frac{1-4}{2}=-\frac{3}{2}\)
c, Ta có : \(P< 0\Rightarrow\frac{1-x}{\sqrt{x}}< 0\Rightarrow1-x< 0\)vì \(\sqrt{x}>0\)
\(\Rightarrow-x< -1\Leftrightarrow x>1\)
3, y nhỏ nhất khi y^2 nhỏ nhất
y^2 = \(x+2\sqrt{x-1}+x-2\sqrt{x-1}+2\sqrt{\left(x-2\sqrt{x-1}\right)\left(x+2\sqrt{x-1}\right)}\)
= \(2x+2\sqrt{x^2-4x+4}=2x+2\sqrt{\left(x-2\right)^2}=2x+2!x-2!\)
(Đến đây thì chịu rồi)
A^2 = \(2+\frac{\sqrt{7}}{2}+2-\frac{\sqrt{7}}{2}-2\sqrt{\left(2+\frac{\sqrt{7}}{2}\right)\left(2-\frac{\sqrt{7}}{2}\right)}\)
A^2 = \(4\) \(-2\sqrt{4-\frac{7}{4}}=\) \(4-2\sqrt{\frac{9}{4}}=4-2\cdot\frac{3}{2}=4-3=1\)
=> A = 1
sau bạn ghi đề từ a -> z cho mn cùng giúp nhé xD
Thay x = 64 vào A ta được :
\(A=\frac{3\sqrt{64}+1}{\sqrt{64}+2}=\frac{3.8+1}{8+2}=\frac{24+1}{10}=\frac{25}{10}=\frac{5}{2}\)