Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chu kỳ dao động nhỏ của con lắc là
\(T=2\pi\sqrt{\frac{l}{9}}\Rightarrow T=2\pi\sqrt{\frac{0,36}{\pi^2}}=1,2\left(s\right)\)
Chọn A
\(T=2\pi\sqrt{\frac{l}{g}}\)
\(T'=2\pi\sqrt{\frac{l'}{g}}\)
\(\Rightarrow\frac{T'}{T}=\sqrt{\frac{l'}{l}}=\sqrt{2}\Rightarrow T'=2\sqrt{2}s\)
Theo bài ta có:
Chu kì lúc ban đầu:
\(T=2\pi\sqrt{\frac{l}{g}}\)
Lúc sau:
\(T'=\left(T-0,4\right)=2\pi\sqrt{\frac{l-0,44}{g}}\)
Giải ra:
\(T-T'=0,4;T+T'=\frac{0,44T^2}{0,4l}=4,4\)
Ta có: T = 2,4 => T' = 2 (s)
Vật thực hiện 10 dao động mất 20s:
\(T=\frac{t}{n}=2s\Rightarrow g=4\pi^2\frac{l}{T^2}=9,86m/s^2\)
Đáp án C
Độ dời bằng 10% biên độ thì \(|x|=0,1.A\)
A. Do \(a=-\omega^2.x\) nên gia tốc tỉ lệ với li độ, do vậy \(|a|=0,1.A_{max}=10\%.A_{max}\) -->Sai
B. Ta có: \((\dfrac{x}{A})^2+(\dfrac{v}{v_{max}})^2=1\) \(\Rightarrow (0,1)^2+(\dfrac{v}{v_{max}})^2=1\)\(\Rightarrow (\dfrac{v}{v_{max}})^2=0,99\)
\(\Rightarrow \dfrac{v}{v_{max}}=0,995=99,5\%\) -->Đúng.
Vậy chọn B, các ý khác bạn tự thử nhé :)
Ta có: \(v=\omega\sqrt{s^2_0-s^2}=\sqrt{gl\left(\alpha^2_0-a^2_1\right)}\)\(=0,271\left(m\right)=27,1\left(cm\text{/}s\right)\)
ban đầu T=0,4s => omega = 5p i=> deta lo =4 cm
=> t= T/4+T/4+T/12=7T/12=7/30s
\(A=10cm\)
\(\Rightarrow\omega=5\sqrt{2}\)
\(\Rightarrow A_{max}=A-\frac{umg}{k}=0,08\)
\(\Rightarrow v_{max}=A_{max}\omega=0,4\sqrt{2}\left(\frac{m}{s}\right)\)
Đáp án C
Phương pháp: Áp dụng phương pháp tính sai số và công thức chu kỳ của con lắc đơn.
Cách giải:
+ Áp dụng công thức:
+ Sai số tương đối (ɛ):
+ Gia tốc: