![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Qua một điểm nằm ngoài một đường thẳng ta vẽ được một và chỉ một đường thẳng song song với đường thẳng đã cho.
Ngoài ra có thể phát biểu tiên đề dưới các dạng sau:
- Nếu qua điểm M nằm ngoài đường thẳng a có 2 đường thẳng song song với a thi chúng trùng nhau.
- Cho điểm M ở ngoài đường thẳng a. Đường thẳng đi qua M và song song với a là duy nhất.
![](https://rs.olm.vn/images/avt/0.png?1311)
Vì E là trung điểm của AB
F là trung điểm của AC
=>EF là đường trung bình của △ABC
=> EF=1/2BC và EF//BC
![](https://rs.olm.vn/images/avt/0.png?1311)
Nội dung tiên đề Euclid
Thừa nhận tích chất sau mang tên "tiên đề Euclid":
Qua một điểm nằm ngoài một đường thẳng ta vẽ được một và chỉ một đường thẳng song song với đường thẳng đã cho.Ngoài ra có thể phát biểu tiên đề dưới các dạng sau:
Nếu qua điểm M nằm ngoài đường thẳng a có 2 đường thẳng song song với a thi chúng trùng nhau.
Cho điểm M ở ngoài đường thẳng a. Đường thẳng đi qua M và song song với a là duy nhất.
Tính chất của hai đường thẳng song song
Nhờ tiên đề Euclid người ta suy ra tính chất sau: Nếu một đường thẳng cắt hai đường thẳng song song thì:
1. Hai góc so le trong bằng nhau;
2. Hai góc đồng vị bằng nhau;
3. Hai góc trong cùng phía bù nhau.
[Hãy đăng kí thành viên hay đăng nhập để xem liên kết này.]
Nếu tổng hai góc trong bằng 180°, thì các đường thẳng là song song và không cắt nhau
Nội dung tiên đề Euclid
Thừa nhận tích chất sau mang tên "tiên đề Euclid":
Qua một điểm nằm ngoài một đường thẳng ta vẽ được một và chỉ một đường thẳng song song với đường thẳng đã cho.Ngoài ra có thể phát biểu tiên đề dưới các dạng sau:
Nếu qua điểm M nằm ngoài đường thẳng a có 2 đường thẳng song song với a thi chúng trùng nhau.
Cho điểm M ở ngoài đường thẳng a. Đường thẳng đi qua M và song song với a là duy nhất.
Tính chất của hai đường thẳng song song
Nhờ tiên đề Euclid người ta suy ra tính chất sau: Nếu một đường thẳng cắt hai đường thẳng song song thì:
1. Hai góc so le trong bằng nhau;
2. Hai góc đồng vị bằng nhau;
3. Hai góc trong cùng phía bù nhau.
[Hãy đăng kí thành viên hay đăng nhập để xem liên kết này.]
Nếu tổng hai góc trong bằng 180°, thì các đường thẳng là song song và không cắt nhau
Nhờ tiên đề Euclid người ta suy ra tính chất sau: Nếu một đường thẳng cắt hai đường thẳng song song thì:
1. Hai góc so le trong bằng nhau;
2. Hai góc đồng vị bằng nhau;
3. Hai góc trong cùng phía bù nhau.
mình đang cần chứng minh cái này đấy .
__________________
Bạn muốn chứng minh từ
1. Hai góc so le trong bằng nhau;
2. Hai góc đồng vị bằng nhau;
3. Hai góc trong cùng phía bù nhau.
Ra tính chất : Nếu một đường thẳng cắt hai đường thẳng song song
Qua một điểm nằm ngoài đường thẳng chỉ có một đường thẳng song song với đường thẳng đó gọi là tiên đề ơ-clit.
![](https://rs.olm.vn/images/avt/0.png?1311)
Động từ
đưa ra ý kiến xét đoán, đánh giá về một đối tượng nào đó
nhận xét về tình hình
lời nhận xét
Danh từ
lời, điều nhận xét
nêu một vài nhận xét
ghi nhận xét vào học bạ
![](https://rs.olm.vn/images/avt/0.png?1311)
1. (A+B)2 = A2+2AB+B2
2. (A – B)2= A2 – 2AB+ B2
3. A2 – B2= (A-B)(A+B)
4. (A+B)3= A3+3A2B +3AB2+B3
5. (A – B)3 = A3- 3A2B+ 3AB2- B3
6. A3 + B3= (A+B)(A2- AB +B2)
7. A3- B3= (A- B)(A2+ AB+ B2)
8. (A+B+C)2= A2+ B2+C2+2 AB+ 2AC+ 2BC
![](https://rs.olm.vn/images/avt/0.png?1311)
- ĐỀ KIỂM TRA CHƯƠNG IV - ĐẠI SỐ 7 ĐỀ BÀI I. Phần trắc nghiệm: (3 điểm) *Hãy khoanh tròn vào chữ cái đứng trước câu trả lời đúng: 1 Câu 1: Giá trị của biểu thức 2 x 5 y tại x = 2; y = -1 là 2 A. 12,5 B. 1 C. 0 D. 10 3 6 Câu 2 : Bậc của đơn thức – x y là: A. 3 B. 6 C. 18 D. 9 1 2 5 2 Câu 3: Kết quả của xy xy là 2 4 3 2 7 2 7 2 3 2 A. xy B. xy C. xy D. xy 4 4 4 4 3 1 5 3 Câu 4: Kết quả của phép tính ( xy).( x y ) là: 4 3 1 6 2 1 6 4 A. x y B. x y C. 4x 6y4 D. -4x6y4 4 4 Câu 5 : Trong các đơn thức sau : – 2xy5 ;7 ; - 3x5y ; 6xy5; x4y; 0. Số các cặp đơn thức đồng dạng là: A. 1 B. 2 C. 3 D. 4 *Hãy chọn cụm từ thích hợp: “bằng 0; bằng a; một nghiệm; hai nghiệm; ba nghiệm” điền vào chỗ trống câu sau: Câu 6: Nếu tại x = a, đa thức P(x) có giá trị ................. thì ta nói a (hoặc x = a) là ..........................của đa thức đó. II. Phần tự luận: (7 điểm) Bài 1 (2,0điểm). cho các đơn thức: 5xy 2 ; x 2 y 2 ; 2 xy 2 ; 3x 2 y 2 a. Sắp xếp các đơn thức thành nhóm đồng dạng b. Tính tổng các đơn thức trên Bài 2 (3,0điểm). Cho hai đa thức P 5 xyz 3x 2 11 và Q 15 5 x 2 xyz Tính: a/ P + Q b/ P – Q Bài 3 (3,0điểm). Cho đa thức P x 5 x 2 2 4 x 3 4 x 2 2 x 6 x 5 a/ Thu gọn rồi sắp xếp các hạng tử của đa thức P x theo luỹ thừa giảm dần của biến b/ Tìm bậc của đa thức và hệ số cao nhất của đa thức P x . c/ Tính P(-2) Bài 4 (2,0 điểm) Cho đa thức Ax ax 2 bx 6 có bậc 1 và A1 3 . Tìm a và b, biết (a, b là hằng số)
- Câu 5 (1 điểm) Tính giá trị của biểu thức: A= (x2 + xy –y2) - x2 – 4xy - 3y2 Tại x = 0,5 ; y = -4 Câu6(3 điểm): Cho hai đa thức P(x) = 2x 3 – 3x + x5 – 4x3 + 4x – x5 + x 2 - 2 và Q(x) = x3 – 2x2 + 3x + 1 + 2x2 1. Thu gọn và viết đa thức P(x); Q(x) theo chiều giảm dần của biến. 2. Tính P(x)+ Q(x); P(x) - Q(x) 3. Gọi M(x) = P(x)+ Q(x). Tìm bậc của M(x). Câu7: (2 điểm) Hãy điền đơn thức thích hợp vào một ô trống dưới đây 5x 2yz = 25x3y2z2 15x 3y2z = 5xyz . 25x4yz .= -x2yz = 1 xy 3 z = 2 Câu 8: ( 1 Điểm ) Cho đa thức P(x) = 2(x-3)2 + 5 Chứng minh rằng đa thức đã cho không có nghiệm. BÀI LÀM
- Hướng dẫn chấm và thang điểm: Câu Nội dung đáp án Thang điểm Trắc Mỗi ý đúng cho 0,5 đ nghiệm 1.D 2.D 3. A 4.C 5.B. 6. bằng 0; là một nghiệm 3đ Thu gọn: A= (x2 + xy –y2) - x2 – 4xy - 3y2 = x2 + xy –y2 - x2 – 4xy - 3y2 Câu 7 = – 3xy - 4y2 0,5đ Thay x= 0,5; y= -4 rồi tính được A= 6 – 64 = - 58 1đ 1) Thu gọn và viết đa thức P(x); Q(x) theo chiều giảm dần của biến. Câu 8 0,5đ P(x) = 2x3 – 3x + x5 – 4x3 + 4x – x5 + x 2 -2 = 2x 3– 4x3 + x 5 – x5 + x2 + 4x – 3x -2 0,5đ = - 2x3 + x2 + x -2 0,5đ Q(x) = x 3 – 2x2 + 3x + 1+2x2 = x 3 + 3x + 1 2)Tính P(x)+ Q(x); P(x) - Q(x) 0,5đ Đặt đúng phép tính rồi tính được: 0,5đ 3 2 P(x)+ Q(x) = - x + x +4x -1 0,5đ P(x) - Q(x) = -3 x3 + x2 -2x -3 3) Vì M(x) = - x3 + x2 +4x -1 nên M(x) có bậc 3 1đ
- Phßng GD & §T Thanh Tr× §Ò kiÓm tra ch¬ng I Trêng THCS Ngäc Håi ------------------ M«n: §¹i sè 7 Thêi gian: 45 phót I. Tr¾c nghiÖm kh¸ch quan (2 ®iÓm). C©u 1. C¸c kh¼ng ®Þnh sau ®óng hay sai? 1) 5 5 2) x 2 x víi mäi x Q 3) 59 . 52 511 4) Mäi sè v« tØ ®Òu kh«ng ph¶i lµ sè h÷u tØ. C©u 2. Chän mét ch÷ c¸i ®øng tríc c©u tr¶ lêi ®óng trong mçi c©u sau: 1) Trong c¸c c¸ch viÕt sau, c¸ch viÕt nµo ®óng? A) 3 Q B) 5 R C) I R D) 0,112 N 25 1 2) Gi¸ trÞ cña biÓu thøc P 0,36. lµ: 16 4 5 5 A) 1 B) C) D) Mét sè kh¸c 4 2 II.Tù luËn (8 ®iÓm)
- Bµi 1(2 ®iÓm). Thùc hiÖn phÐp tÝnh (b»ng c¸ch hîp lý nÕu cã thÓ). 1 3 13 1 a) 7 8 8 7 3 2 1 2 1 b) 9. : 0,5 1 3 3 2 Bµi 2(2,5 ®iÓm). T×m x, biÕt: 3 1 4 4 1 a) 1 x 1 b) x 0 4 2 5 5 7 Bµi 3(2,5 ®iÓm). Sè häc sinh khèi 6, 7, 8 tØ lÖ víi c¸c sè 9; 8; 7. BiÕt r»ng sè häc sinh khèi 8 Ýt h¬n sè häc sinh khèi 6 lµ 50 häc sinh. TÝnh sè häc sinh mçi khèi ? Bµi 4(1 ®iÓm). a b c a 3 .b 2 .c1930 Cho vµ a + b + c 0. TÝnh gi¸ trÞ cña M b c a b 1935 -------------------------------HÕt--------------------------------- Phßng GD & §T Thanh Tr× ®¸p ¸n §Ò kiÓm tra ch¬ng I Trêng THCS Ngäc Håi ------------------ M«n: §¹i sè 7 Thêi gian: 45 phót I. Tr¾c nghiÖm kh¸ch quan (2 ®iÓm). C©u 1. 1) Sai 2) Sai 3) §óng 4) §óng (Mçi ý ®óng ®îc 0,25®iÓm) C©u 2. 1) C (0,5®iÓm) 2) A (0,5®iÓm) II.Tù luËn (8 ®iÓm) Bµi 1(2 ®iÓm). a) 2 (1 ®iÓm) 7 b) 3 (1 ®iÓm) 5 Bµi 2(2,5 ®iÓm). a) x = 1 11 (1,5 ®iÓm) 35 b) x = 23 ; x= 33 (1 ®iÓm) 35 35
- Bµi 3(2,5 ®iÓm) Gäi sè hs khèi 6, 7, 8, lÇn lît lµ a, b, c (a, b, c N*) 0,5®iÓm a b c Ta cã vµ a - c = 50 0,5®iÓm 9 8 7 a b c a c 50 => 25 9 8 7 97 2 0,5®iÓm => a = 225 b = 200 0,5®iÓm c = 175 KÕt luËn. 0,5®iÓm Bµi 4(1 ®iÓm). ¸p dông tÝnh chÊt d·y tØ sè b»ng nhau ta cã: a b c abc 1 b c a bca a = b ; b = c; c = a a=b=c a 3 .b 2 .c1930 b 3 .b 2 .b1930 b1935 VËy M 1935 1 b1935 b1935
Bài 1. Tính A = 1.2 + 2.3 + 3.4 + … + n.(n + 1)
Lời giải:
Cách 1:
Ta thấy mỗi số hạng của tổng trên là tích của hai số tự nhên liên tiếp, khi đó:
Gọi a1 = 1.2 → 3a1 = 1.2.3 → 3a1 = 1.2.3 - 0.1.2
a2 = 2.3 → 3a2 = 2.3.3 → 3a2 = 2.3.4 - 1.2.3
a3 = 3.4 → 3a3 = 3.3.4 → 3a3 = 3.4.5 - 2.3.4
…………………..
an-1 = (n - 1)n → 3an-1 =3(n - 1)n → 3an-1 = (n - 1)n(n + 1) - (n - 2)(n - 1)n
an = n(n + 1) → 3an = 3n(n + 1) → 3an = n(n + 1)(n + 2) - (n - 1)n(n + 1)
Cộng từng vế của các đẳng thức trên ta có:
3(a1 + a2 + … + an) = n(n + 1)(n + 2)
Cách 2: Ta có
3A = 1.2.3 + 2.3.3 + … + n(n + 1).3 = 1.2.(3 - 0) + 2.3.(3 - 1) + … + n(n + 1)[(n - 2) - (n - 1)] = 1.2.3 - 1.2.0 + 2.3.3 - 1.2.3 + … + n(n + 1)(n + 2) - (n - 1)n(n + 1) = n(n + 1)(n + 2)
* Tổng quát hoá ta có:
k(k + 1)(k + 2) - (k - 1)k(k + 1) = 3k(k + 1). Trong đó k = 1; 2; 3; …
Ta dễ dàng chứng minh công thức trên như sau:
k(k + 1)(k + 2) - (k - 1)k(k + 1) = k(k + 1)[(k + 2) - (k - 1)] = 3k(k + 1)
Bài 2. Tính B = 1.2.3 + 2.3.4 + ... + (n - 1)n(n + 1)
Lời giải
Áp dụng tính kế thừa của bài 1 ta có:
4B = 1.2.3.4 + 2.3.4.4 + ... + (n - 1)n(n + 1).4
= 1.2.3.4 - 0.1.2.3 + 2.3.4.5 - 1.2.3.4 + ... + (n - 1)n(n + 1)(n + 2) - [(n - 2)(n - 1)n(n + 1)]
= (n - 1)n(n + 1)(n + 2) - 0.1.2.3 = (n - 1)n(n + 1)(n + 2)
Ơ-clit chứ ko phải ở-cơ lít nhé
Nó đây : Qua 1 điểm bất kì ta chỉ vẽ đc 1 và chỉ 1 đường thẳng song song vs đường thẳng cho trc
Meow~
Qua một điểm và mộ đường thẳng a cho trước,có 1 và chỉ 1 đuờng thẳng đi qua điểm đó và song song với đường thẳng đó