K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2023

\(A=\dfrac{1}{2\cdot5}+\dfrac{1}{5\cdot8}+...+\dfrac{1}{95\cdot98}\)

\(3A=\dfrac{3}{2\cdot5}+\dfrac{3}{5\cdot8}+...+\dfrac{3}{95\cdot98}\)

\(3A=\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+...+\dfrac{1}{95}-\dfrac{1}{98}\)

\(3A=\dfrac{1}{2}-\dfrac{1}{98}\)

\(A=\dfrac{\dfrac{1}{2}-\dfrac{1}{98}}{3}=\dfrac{8}{49}\)

5 tháng 9 2021

Đặt A=\(\dfrac{1}{2.5}+\dfrac{1}{5.8}+...+\dfrac{1}{95.98}\)

\(3A=\dfrac{3}{2.5}+\dfrac{3}{5.8}+...+\dfrac{3}{95.98}\)

\(3A=\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+...+\dfrac{1}{95}-\dfrac{1}{98}\)

\(3A=\dfrac{1}{2}-\dfrac{1}{98}\)

\(3A=\dfrac{24}{49}\Rightarrow A=\dfrac{8}{49}\)

5 tháng 9 2021

    \(\dfrac{1}{2.5}+\dfrac{1}{5.8}+\dfrac{1}{8.11}+...+\dfrac{1}{92.95}+\dfrac{1}{95.98}\)

\(=\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{95}-\dfrac{1}{98}\)

\(=\dfrac{1}{2}-\dfrac{1}{98}\)

\(=\dfrac{24}{49}\)

18 tháng 9 2015

bài này có tính chất rồi mà 

5 tháng 3 2019

1/2.5 nhé

5 tháng 3 2019

\(A=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{98.101}\)

\(3A=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{98.101}\)

\(3A=\frac{5-2}{2.5}+\frac{8-5}{5.8}+\frac{11-8}{8.11}+...+\frac{101-98}{98.101}\)

\(3A=\frac{5}{2.5}-\frac{2}{2.5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{98}-\frac{1}{101}\)

\(3A=\frac{1}{2}-\frac{1}{101}=\frac{99}{202}\)

\(\Leftrightarrow A=\frac{99}{202}\div3\)

\(\Rightarrow A=\frac{33}{202}\)

15 tháng 7 2018

Ta có : A = 1/ 2.5 + 1/ 5.8 + 1/ 8.11 + ... + 1/ (3n-1).(3n+2) .

              = 1/2 - 1/5 + 1/5 - 1/8 + 1/8 - 1/11 + ... + 1/ 3n-1 - 1/ 3n+2 .

              = 1/2 - 1/ 3n+2 .

              = 3n + 2 - 2 / 2 .( 3n+2 ) .

             = 3n / 2.(3n+2) .

10 tháng 10 2017

Đặt :

\(A=\dfrac{1}{2.5}+\dfrac{1}{5.8}+.........+\dfrac{1}{\left(3n-1\right)\left(3n+2\right)}\)

\(\Leftrightarrow3A=\dfrac{3}{2.5}+\dfrac{3}{5.8}+............+\dfrac{3}{\left(3n-1\right)\left(3n+2\right)}\)

\(\Leftrightarrow3A=\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+........+\dfrac{1}{3n-1}-\dfrac{1}{3n+2}\)

\(\Leftrightarrow3A=\dfrac{1}{2}-\dfrac{1}{3n+2}\)

10 tháng 10 2017

@Akai Haruma em không hiểu tại sao bài kia chị lại tick cho bạn đó ạ,đề nói chứng minh,mak bạn đó đã làm hết đâu:

\(VT=\dfrac{1}{2.5}+\dfrac{1}{5.8}+\dfrac{1}{8.11}+...+\dfrac{1}{\left(3n-1\right)\left(3n+2\right)}\)

\(VT=\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{3n-1}+\dfrac{1}{3n+2}\right)\)

\(VT=\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{3n+2}\right)\)

\(VT=\dfrac{1}{6}-\dfrac{1}{9n+6}\)

\(VT=\dfrac{9n+6}{54n+36}-\dfrac{6}{54n+36}\)

\(VT=\dfrac{9n+6-6}{54n+36}=\dfrac{9n}{54n+36}=\dfrac{9n}{9\left(6n+4\right)}=\dfrac{n}{6n+4}=VP\left(đpcm\right)\)

22 tháng 9 2016

a) \(\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+....+\frac{1}{x\left(x+3\right)}=\frac{101}{1540}\)

\(=3.\left(\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{x\left(x+3\right)}\right)=\frac{101}{1540}.3\)

\(=\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{x}-\frac{1}{x.3}=\frac{303}{1540}\)

\(=\frac{1}{5}-\frac{1}{x+3}=\frac{303}{1540}\)

\(=\frac{1}{x+3}=\frac{1}{5}-\frac{303}{1540}\)

\(=\frac{1}{x+3}=\frac{1}{308}\)

\(x+3=308\)

\(\Rightarrow x=305\)

10 tháng 5 2017

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

27 tháng 8 2019

\(1-\frac{1}{2\cdot5}-\frac{1}{5\cdot8}-\frac{1}{8\cdot11}-...-\frac{1}{92\cdot95}\)

\(=1-\left(\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+...+\frac{1}{92\cdot95}\right)\)

\(=1-\frac{1}{3}\left(\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+...+\frac{2}{92\cdot95}\right)\)

\(=1-\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{92}-\frac{1}{95}\right)\)

\(=1-\frac{1}{3}\left(\frac{1}{2}-\frac{1}{95}\right)\)

\(=1-\frac{1}{3}\cdot\frac{93}{190}\)

\(=1-\frac{31}{190}\)

\(=\frac{159}{190}\)

27 tháng 8 2019

\(1-\frac{1}{2.5}-\frac{1}{5.8}-\frac{1}{8.11}-...-\frac{1}{92.95}\)

\(=1-\left(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{92.95}\right)\)

\(=1-\frac{1}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{92.95}\right)\)

\(=1-\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{92}-\frac{1}{95}\right)\)

\(=1-\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{95}\right)\)

\(=1-\frac{1}{3}.\frac{93}{190}\)

\(=1-\frac{31}{190}\)

\(=\frac{159}{190}\)

22 tháng 8 2017

Ta có:

\(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{\left(3n+2\right).\left(3n+5\right)}\)

\(\Rightarrow\frac{1}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{\left(3n+2\right).\left(3n+5\right)}\right)\)

\(\Rightarrow\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{3n+2}-\frac{1}{3n+5}\right)\)

\(\Rightarrow\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{3n+5}\right)\)

\(\Rightarrow\frac{1}{6}-\frac{1}{9n+15}\)