Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\frac{A}{B}=\frac{\left(-2\right)^0+1^{2017}+\left(\frac{-1}{3}\right)^8.3^8}{2^{15}}:\frac{6^2}{2^{16}}\)
=> \(\frac{A}{B}=\frac{1+1+\left(\frac{-1}{3}.3\right)^8}{2^{15}}.\frac{2^{16}}{6^2}\)
=> \(\frac{A}{B}=\frac{1+1+1^8}{1}.\frac{2}{6^2}\)
=> \(\frac{A}{B}=\frac{3}{1}.\frac{2}{2^2.3^2}\)
=> \(\frac{A}{B}=\frac{1}{2.3}=\frac{1}{6}\)
Ta có:
\(\frac{A}{B}\)=\(\frac{\left(-2\right)^0+1^{2017}+\left(\frac{-1}{3}\right)^8\cdot3^8}{2^{15}}\):\(\frac{6^2}{2^{16}}\)
=>\(\frac{A}{B}\)=\(\frac{1+1+\left(\frac{-1}{3}\cdot3\right)^8}{2^{15}}\).\(\frac{2^{16}}{6^2}\)
=>\(\frac{A}{B}\)=\(\frac{1+1+1^8}{2^{15}}\).\(\frac{2^{16}}{6^2}\)
=>\(\frac{A}{B}\)=\(\frac{3}{2^{15}}\).\(\frac{2^{16}}{6^2}\)
=>\(\frac{A}{B}\)=\(\frac{2}{3.2^2}\)
=>\(\frac{A}{B}\)=\(\frac{1}{6}\)
a)\(\left(\frac{5}{2}-\frac{4}{3}\right).\frac{6}{7}+\left(-\frac{3}{2}\right)^5:\left(-\frac{3}{2}\right)^3=\left(\frac{15}{6}-\frac{8}{6}\right).\frac{6}{7}+\left(-\frac{3}{2}\right)^2=\frac{7}{6}.\frac{6}{7}+\frac{9}{4}=\frac{9}{4}\)
a) \(\left(2x-1\right)^3=-8\)
\(\left(2x-1\right)^3=\left(-2\right)^3\)
=> 2x - 1 = -2
=> x = -1/2
Bài 3:
a, Đặt \(A=\left|2x-\frac{1}{5}\right|+2017\)
Để A đạt GTNN thì \(\left|2x-\frac{1}{5}\right|\)đạt GTNN
Mà \(\left|2x-\frac{1}{5}\right|\ge0\)
Do đó \(\left|2x-\frac{1}{5}\right|=0\)thì A đạt GTNN tức là A = 0 + 2017 = 2017 khi
\(2x-\frac{1}{5}=0=>2x=0+\frac{1}{5}=\frac{1}{5}=>x=\frac{1}{5}.\frac{1}{2}=\frac{1}{10}\)
b, Đặt \(B=\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{3}\right|+\left|x+\frac{1}{4}\right|\)
Ta thấy \(\frac{1}{2}>\frac{1}{3}>\frac{1}{4}=>x+\frac{1}{2}>x+\frac{1}{3}>x+\frac{1}{4}\)
Do đó để B đạt GTNN thì \(x+\frac{1}{2}\)đạt GTNN
mà \(x+\frac{1}{2}\ge0\)
Từ 2 điều trên => \(x+\frac{1}{2}=0=>x=-\frac{1}{2}\)
Khi đó \(x+\frac{1}{3}=-\frac{1}{2}+\frac{1}{3}=-\frac{1}{6}\)
và \(x+\frac{1}{4}=-\frac{1}{2}+\frac{1}{4}=-\frac{1}{4}\)
Vậy GTNN của \(B=\left|0\right|+\left|-\frac{1}{6}\right|+\left|-\frac{1}{4}\right|=0+\frac{1}{6}+\frac{1}{4}=\frac{10}{24}\)khi x = -1/2
Phần b này thì mình không chắc lắm bạn tự xem lại nhé
Bài 1:
\(M=\frac{2017}{11-x}\)đạt GTLN <=> 11 - x đạt GTNN và 11 - x > 0 (nếu không thì M đạt giá trị âm (vô lí))
=> 11 - x = 1
=> x = 10
Vậy x = 10 thì M đạt GTLN tức là bằng \(\frac{2017}{1}=2017\)
3,
a) (−23+37):45+(−13+47):45
= \(-\frac{5}{21}:\frac{4}{5}+\frac{5}{21}:\frac{4}{5}\)
= \(\left(-\frac{5}{21}+\frac{5}{21}\right):\frac{4}{5}\)
= \(0:\frac{4}{5}=0\)
2,
a) \(\frac{-3}{4}\).\(\frac{12}{-5}\).(\(\frac{-25}{6}\))
= \(\frac{-3.4.3.\left(-5\right).5}{4.\left(-5\right).3.3}\)
= \(-5\)
b) (−2).\(\frac{-38}{21}\).\(\frac{-7}{4}\).(\(\frac{-3}{8}\))
= \(\frac{-2.\left(-38\right)\left(-7\right)\left(-3\right)}{\left(-7\right)\left(-3\right)\left(-2\right)\left(-2\right).8}\)
= \(\frac{19}{8}\)
c) (\(\frac{11}{12}:\frac{33}{16}\)).\(\frac{3}{5}\)
= \(\left(\frac{11}{12}.\frac{16}{33}\right).\frac{3}{5}\)
= \(\frac{4}{9}.\frac{3}{5}\)
= \(\frac{4}{15}\)
d) \(\frac{7}{23}\left[\left(\frac{-8}{6}\right)-\frac{45}{18}\right]\)
= \(\frac{7}{23}.\left(\frac{-41}{10}\right)\)
= \(\frac{-287}{203}\)
3. Tính:
a) (\(\frac{-2}{3}+\frac{3}{7}\)):\(\frac{4}{5}\)+(\(\frac{-1}{3}+\frac{4}{7}\)):\(\frac{4}{5}\)
= (\(\frac{-2}{3}+\frac{3}{7}\)\(+\)\(\frac{-1}{3}+\frac{4}{7}\)) : \(\frac{4}{5}\)
= 0 : \(\frac{4}{5}\)
= 0
b) \(\frac{5}{9}\):(\(\frac{1}{11}-\frac{5}{22}\))+\(\frac{5}{9}\):(\(\frac{1}{15}-\frac{2}{3}\))
= \(\frac{5}{9}\): \(\frac{-3}{22}\)+ \(\frac{5}{9}\): \(\frac{-3}{5}\)
= \(\frac{5}{9}\): \(\frac{-81}{110}\)
= \(\frac{-550}{729}\)
\(=\frac{16}{5}.\frac{15}{16}-\left(\frac{3}{4}+\frac{2}{7}\right):\left(\frac{-29}{28}\right)\)
\(=3-\left(\frac{21}{28}+\frac{8}{28}\right):\left(\frac{-29}{28}\right)\)
\(=3-\left(\frac{29}{28}\right).\left(\frac{-28}{29}\right)\)
\(=3-\left(-1\right)\)
\(=4\)
b) \(=\left(\frac{1}{4}+\frac{25}{2}-\frac{5}{16}\right):\left(12-\frac{7}{12}:\left(\frac{3}{8}-\frac{1}{12}\right)\right)\)
\(=\left(\frac{4}{16}+\frac{200}{16}-\frac{5}{16}\right):\left(12-\frac{7}{12}:\left(\frac{3.3}{2.3.4}-\frac{2}{2.3.4}\right)\right)\)
\(=\left(\frac{199}{16}\right):\left(12-\frac{7}{12}:\left(\frac{9}{24}-\frac{2}{24}\right)\right)\)
\(=\frac{199}{16}:\left(12-\frac{7}{12}.\frac{24}{7}\right)\)
\(=\frac{199}{16}:\left(12-2\right)\)
\(=\frac{199}{16}:10\)
\(=\frac{199}{160}\)
c) \(\left(\frac{-3}{5}+\frac{5}{11}\right):\frac{-3}{7}+\left(\frac{-2}{5}+\frac{6}{5}\right):\frac{-3}{7}\)
\(\left(\frac{-33}{55}+\frac{25}{55}\right):\frac{-3}{7}+\left(\frac{4}{5}\right):\frac{-3}{7}\)
\(\left(\frac{-8}{55}\right).\frac{-7}{3}+\frac{4}{5}.\frac{-7}{3}\)
\(\frac{-7}{3}\left(\frac{-8}{55}+\frac{4}{5}\right)\)
\(\frac{-7}{3}.\frac{36}{55}=\frac{-84}{55}\)
\(A=\frac{\left(-2\right)^0+1^{2017}+\left(-\frac{1}{3}\right)^8.3^8}{2^{15}}\)
\(=\frac{1+1+\frac{1}{3^8}.3^8}{2^{15}}\)
\(=\frac{1+1+1}{2^{15}}\)
\(=\frac{3}{2^{15}}\)
\(B=\frac{6^2}{2^{16}}\)
\(=\frac{2^2.3^2}{2^2.2^{14}}\)
\(=\frac{9}{2^{14}}\)
Dễ dàng thấy \(9>3\)
\(2^{14}< 2^{15}\)
Phép chia có cùng mẫu, tử lớn hơn thì đã lớn hơn, nay mẫu còn nhỏ hơn, chắc chắn rằng \(B>A\)
Vậy ...