
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a) \(\frac{3x}{2x+4}+\frac{x+3}{x^2-4}\)
\(=\frac{3x}{2\left(x+2\right)}+\frac{x+3}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{3x\left(x-2\right)}{2\left(x+2\right)\left(x-2\right)}+\frac{2\left(x+3\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{3x\left(x-2\right)+2\left(x+3\right)}{2\left(x+2\right)\left(x-2\right)}\)
\(=\frac{3x^2-6x+2x+6}{2\left(x^2-4\right)}\)
\(=\frac{3x^2-4x+6}{2\left(x^2-4\right)}\)

\(\frac{4-x}{x^3+2x}-\frac{x+5}{x^3-x^2+2x-2}\)( ĐKXĐ : \(x\ne1\))
\(=\frac{4-x}{x\left(x^2+2\right)}-\frac{x+5}{x^2\left(x-1\right)+2\left(x-1\right)}\)
\(=\frac{4-x}{x\left(x^2+2\right)}-\frac{x+5}{\left(x-1\right)\left(x^2+2\right)}\)
\(=\frac{\left(4-x\right)\left(x-1\right)}{x\left(x-1\right)\left(x^2+2\right)}-\frac{x\left(x+5\right)}{x\left(x-1\right)\left(x^2+2\right)}\)
\(=\frac{-x^2+5x-4}{x\left(x-1\right)\left(x^2+2\right)}-\frac{x^2+5x}{x\left(x-1\right)\left(x^2+2\right)}\)
\(=\frac{-x^2+5x-4-\left(x^2+5x\right)}{x\left(x-1\right)\left(x^2+2\right)}\)
\(=\frac{-x^2+5x-4-x^2-5x}{x\left(x-1\right)\left(x^2+2\right)}\)
\(=\frac{-2x^2-4}{x\left(x-1\right)\left(x^2+2\right)}\)
\(=\frac{-2\left(x^2+2\right)}{x\left(x-1\right)\left(x^2+2\right)}\)
\(=\frac{-2}{x\left(x-1\right)}=\frac{-2}{x\left(x-1\right)}\)
Đang đánh máy thì bấm gửi -..-

\(1.\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)\)
\(=\sqrt{x}\left(\sqrt{x}-2\right)+1\left(\sqrt{x}-2\right)\)
\(=x-2\sqrt{x}+\sqrt{x}-2\)
\(=x-\sqrt{x}-2\)
\(2.\left(x+4\right)\left(x-2\right)-\left(x-3\right)^2\)
\(=x\left(x-2\right)+4\left(x-2\right)-\left(x^2-6x+9\right)\)
\(=x^2-2x+4x-8-x^2+6x-9\)
\(=8x-17\)

Trả lời:
1) \(\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)=\left(\sqrt{x}\right)^2-2\sqrt{x}+\sqrt{x}-2=x-\sqrt{x}-2\)
2) \(\left(x+4\right)\left(x-2\right)-\left(x-3\right)^2=x^2-2x+4x-8-\left(x^2-6x+9\right)\)\(=x^2+2x-8-x^2+6x-9=8x-17\)
3) \(3x\left(2x^3-3x^2+5\right)=6x^4-9x^3+15x\)

\(a,\left(x-2\right).\left(x-3\right)-\left(x+3\right).\left(x-3\right)\)
\(=\left(x-3\right).\left(x-2-x+3\right)=x-3\)
\(b,\frac{\left(x^2+4x+4\right)}{x+2}-4x+5=\frac{\left(x+2\right)^2}{x+2}-4x+5\)
\(x+2-4x+5=-3x+7\)
a) \(\left(x-2\right)\left(x-3\right)-\left(x+3\right)\left(x-3\right)\)
\(=\left(x^2-5x+6\right)-\left(x^2-9\right)\)
\(=x^2-5x+6-x^2+9\)
\(=15-5x\)
b) \(\left(x^2+4x+4\right):\left(x+2\right)-\left(4x-5\right)\)
\(=\left(x+2\right)^2:\left(x+2\right)-\left(4x-5\right)\)
\(=\left(x+2\right)-4x+5\)
\(=x+2-4x+5\)
\(=7-3x\)

\(\frac{3\left(x+1\right)}{x+2}-\frac{3x-6}{x^2-4}\)
\(=\frac{3\left(x+1\right)}{x+2}-\left(\frac{3x-6}{x^2-4}\right)\)
\(=\frac{3x^2-6x^2-12x+24}{x^3+2x^2-4x-8}\)
\(=\frac{3\left(x+2\right)\left(x-2\right)\left(x-2\right)}{\left(x+2\right)\left(x+2\right)\left(x-2\right)}\)
\(=\frac{3x-6}{x+2}\)
\(\frac{x^2+4x+4}{1-x}.\frac{\left(1-x\right)^2}{3\left(x+2\right)^3}\)
\(=\frac{x^2+4x+4}{1-x}.\left[\frac{\left(1-x\right)^2}{3\left(x+2\right)^3}\right]\)
\(=\frac{x^4+2x^3-3x^2-4x+4}{-3x^4-15x^3-18x^2+12x+24}\)
\(=\frac{\left(x-1\right)\left(x-1\right)\left(x+2\right)\left(x+2\right)}{3\left(-x+1\right)\left(x+2\right)\left(x+2\right)\left(x+2\right)}\)
\(=\frac{-x+1}{3x+6}\)

\(\frac{x+6}{x^2-4}-\frac{2}{x^2+2x}\)
\(=\frac{x+6}{\left(x-2\right)\left(x+2\right)}-\frac{2}{x\left(x+2\right)}\)
\(=\frac{x\left(x+6\right)}{x\left(x-2\right)\left(x+2\right)}-\frac{2\left(x-2\right)}{x\left(x-2\right)\left(x+2\right)}\)
\(=\frac{x^2+6x-2x+4}{x\left(x-2\right)\left(x+2\right)}\)
\(=\frac{x^2+4x+4}{x\left(x-2\right)\left(x+2\right)}\)
\(=\frac{\left(x+2\right)^2}{x\left(x-2\right)\left(x+2\right)}\)
\(=\frac{x+2}{x\left(x-2\right)}\)

\(\frac{x+6}{x^2+4}-\frac{2}{x^2+2x}\)
\(=\frac{x+6}{\left(x+2\right)^2}-\frac{2}{x\left(x+2\right)}\)
\(=\frac{x\left(x+6\right)}{x\left(x+2\right)^2}-\frac{2\left(x+2\right)}{x\left(x+2\right)^2}\)
\(=\frac{x^2+6x-2x-4}{x\left(x+2\right)^2}\)
\(=\frac{x^2+4x-4}{x\left(x+2\right)^2}\)

Bài làm:
Ta có: \(\frac{4-x^2}{x-3}+\frac{2x-2x^2}{3-x}+\frac{5-4x}{x-3}\)
\(=\frac{4-x^2}{x-3}+\frac{2x^2-2x}{x-3}+\frac{5-4x}{x-3}\)
\(=\frac{x^2-6x+9}{x-3}\)
\(=\frac{\left(x-3\right)^2}{\left(x-3\right)}=x-3\) \(\left(x\ne3\right)\)
\((x+4)(x-2)-(x-3)^2\)
\(=(x⋅x+x⋅(−2)+4⋅x+4⋅(−2))−(x⋅x+x⋅(−3)+(−3)⋅x+(−3)⋅(−3))\)
\(=(x^2-2x+4x-8)-(x^2-3x-3x+9)\)
\(\) \(=(x^2+2x-8)-(x^2-6x+9)\)
\(=x^2+2x-8-x^2+6x-9\)
\(=8x−17\)
(x+4)(x-2)-(x-3)^2
=x^2-2x+4x-8-x^2+6x-9
=2x-8-9
=2x-17
tichs ddi bn owi