Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{2+\sqrt{3}}\cdot\sqrt{2+\sqrt{2+\sqrt{3}}}\cdot\sqrt{2-\sqrt{2+\sqrt{3}}}\)
\(=\sqrt{2+\sqrt{3}}\cdot\sqrt{2^2-\left(\sqrt{2+\sqrt{3}}\right)^2}\)
\(=\sqrt{2+\sqrt{3}}\cdot\sqrt{4-2-\sqrt{3}}\)
\(=\sqrt{2+\sqrt{3}}\cdot\sqrt{2-\sqrt{3}}\)
\(=\sqrt{2^2-\sqrt{3}^2}=\sqrt{4-3}=1\)
\(A=\sqrt{3+\sqrt{5+2\sqrt{3}}.\sqrt{3-\sqrt{5+2\sqrt{3}}}}=\sqrt{\left(3^2\right)-\left(\sqrt{5+2\sqrt{3}}\right)^2}\)
\(=\sqrt{4-2\sqrt{3}}=\sqrt{\left(\sqrt{3}-1\right)^2}=\sqrt{3}-1\)
\(B=\sqrt{4+\sqrt{8}}.\sqrt{2+\sqrt{2+\sqrt{2}}}.\sqrt{2-\sqrt{2+\sqrt{2}}}\)
\(=\sqrt{4+2\sqrt{2}}.\sqrt{2^2-2-\sqrt{2}}=\sqrt{2}.\sqrt{2+\sqrt{2}}.\sqrt{2-\sqrt{2}}\)
\(=\sqrt{2}.\sqrt{4-2}=\sqrt{2}.\sqrt{2}=2\)
\(C=\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}.\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}\)
\(=\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{2^2-\left(2+\sqrt{2+\sqrt{3}}\right)}\)
\(=\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{2-\sqrt{2+\sqrt{3}}}=\sqrt{2+\sqrt{3}}.\sqrt{2^2-\left(2+\sqrt{3}\right)}\)
\(=\sqrt{2+\sqrt{3}}.\sqrt{2-\sqrt{3}}=\sqrt{4-3}=1\)
\(D=\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
\(=\sqrt{4+\sqrt{15}}.\sqrt{2}.\left(\sqrt{5}-\sqrt{3}\right).\sqrt{4+\sqrt{15}}.\sqrt{4-\sqrt{15}}\)
\(=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}.\left(\sqrt{5}-\sqrt{3}\right).\sqrt{4^2-15}\)
\(=\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)=5-3=2\)
\(E=\left(3-\sqrt{5}\right)\sqrt{3+\sqrt{5}}+\left(3+\sqrt{5}\right).\sqrt{3-\sqrt{5}}\)
\(=\sqrt{3+\sqrt{5}}.\sqrt{3-\sqrt{5}}.\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}.\sqrt{3-\sqrt{5}}.\sqrt{3+\sqrt{5}}\)
\(=2\sqrt{3-\sqrt{5}}+2\sqrt{3+\sqrt{5}}=\sqrt{2}\left(\sqrt{6-2\sqrt{5}}+\sqrt{6+2\sqrt{5}}\right)\)
\(=\sqrt{2}.\left(\sqrt{5}-1+\sqrt{5}+1\right)=2\sqrt{10}\)
a) \(\sqrt{13-\sqrt{160}}-\sqrt{53+4\sqrt{90}}\)
\(=\sqrt{13-2\sqrt{40}}-\sqrt{53+12\sqrt{10}}\)
\(=\sqrt{\left(\sqrt{8}\right)^2-2.\sqrt{8}.\sqrt{5}+\left(\sqrt{5}\right)^2}-\sqrt{\left(3\sqrt{5}\right)^2+2.3\sqrt{5}.2\sqrt{2}+\left(2\sqrt{2}\right)^2}\)
\(=\sqrt{\left(\sqrt{8}-\sqrt{5}\right)^2}-\sqrt{\left(3\sqrt{5}+2\sqrt{2}\right)^2}\)
\(=\left|\sqrt{8}-\sqrt{5}\right|-\left|3\sqrt{5}+2\sqrt{2}\right|\)
= √8 - √5 - 3√5 - 2√2 = -4√5
b) (1+√3-√2).(1+√3+√2)= [(1+√3)^2-(√2)^2] = 4+2√3-2=2+2√3
a) =sprt{13-=sprt{160}} - =sprt{53+4=sprt{90}}
= =sprt{(=sprt{8} - =sprt{5})2 } - =sprt{(=sprt{45} + =sprt{8})2 }
= =sprt{8} - =sprt{5} - =sprt{45} - =sprt{8}
= -3=sprt{5}
b) ( 1 + =sprt{3} - =sprt{2} )( 1+ =sprt{3} + =sprt{2} )
= ( 1 + =sprt{3} )2 - (=sprt{2})2
= 4 + 2=sprt{3} - 2
=2 + 2=sprt{3}
a: \(A=\left(4+\sqrt{15}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)\cdot\sqrt{8-2\sqrt{15}}\)
\(=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)
\(=32-8\sqrt{15}+8\sqrt{15}-30=2\)
b: \(\sqrt{2}\cdot B=\left(3-\sqrt{5}\right)\left(\sqrt{5}+1\right)+\left(3+\sqrt{5}\right)\left(\sqrt{5}-1\right)\)
\(\Leftrightarrow B\sqrt{2}=3\sqrt{5}+3-5-\sqrt{5}+3\sqrt{5}-3+5-\sqrt{5}\)
\(\Leftrightarrow B\sqrt{2}=4\sqrt{5}\)
hay \(B=2\sqrt{10}\)
d: \(D\sqrt{2}=\sqrt{5}+\sqrt{3}+\sqrt{5}-\sqrt{3}-2\cdot\left(\sqrt{5}-1\right)\)
\(=2\sqrt{5}-2\sqrt{5}+2=2\)
hay \(D=\sqrt{2}\)
g, h. Câu hỏi của Nữ hoàng sến súa là ta - Toán lớp 9 - Học toán với OnlineMath
\(a,\sqrt{12}+2\sqrt{27}+3\sqrt{75}-9\sqrt{48}=2\sqrt{3}+6\sqrt{3}+15\sqrt{3}-36\sqrt{3}\)
\(=-13\sqrt{3}\)
\(b,2\sqrt{3}.\left(\sqrt{27}+2\sqrt{48}-\sqrt{75}\right)=2\sqrt{3}\left(3\sqrt{3}+8\sqrt{3}-5\sqrt{3}\right)\)
\(=2\sqrt{3}.6\sqrt{3}=36\)
\(c,\left(2\sqrt{2}-\sqrt{3}\right)^2=8-4\sqrt{6}+3\)
\(=11-4\sqrt{6}\)
\(d,\left(1+\sqrt{3}-\sqrt{2}\right)\left(1+\sqrt{3}+\sqrt{2}\right)=1+2\sqrt{3}+3-2\)
\(=2+2\sqrt{3}\)
\(\sqrt{2+\sqrt{3}}\cdot\sqrt{2+\sqrt{2+\sqrt{3}}}\cdot\sqrt{2-\sqrt{2+\sqrt{3}}}\)
= \(\sqrt{2+\sqrt{3}}+\sqrt{2^2-\left(\sqrt{2+\sqrt{3}}\right)^2}\)
= \(\sqrt{2+\sqrt{3}}+\sqrt{4-\left(2+\sqrt{3}\right)}\)
= \(\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}\)
= \(\sqrt{4-3}\)
= \(\sqrt{1}\)
= \(1\)