\(P=\left(1-\frac{1}{1+2}\right).\left(1-\frac{1}{1+2+3}\right).....\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2017

Với n thuộc N sao ta có :

\(1-\frac{1}{1+2+3+....+n}=1-\frac{1}{\frac{n\left(n+1\right)}{2}}=1-\frac{2}{n\left(n+1\right)}=\frac{n^2+n-2}{n\left(n+1\right)}\)

\(=\frac{\left(n-1\right)\left(n+2\right)}{\left(n+1\right)n}\)

Áp dụng ta được :

\(P=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}......\frac{2010.2013}{2011.2012}\)

\(=\frac{\left(1.2.3.....2010\right)\left(4.5.6.....2013\right)}{\left(2.3.4.....2011\right)\left(3.4.5.....2012\right)}\)

\(=\frac{2013}{2011.3}=\frac{2013}{6033}=\frac{671}{2011}\)

13 tháng 11 2016

\(D=\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}\right):\left(\frac{2011}{1}+\frac{2010}{2}+...+\frac{1}{2011}\right)\)

\(\Rightarrow D=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}}{\frac{2011}{1}+\frac{2010}{2}+\frac{2009}{3}+...+\frac{1}{2011}}\)

\(\Rightarrow D=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}}{\left(\frac{2010}{2}+1\right)+\left(\frac{2009}{3}+1\right)+...+\left(\frac{1}{2011}+1\right)+1}\)

\(\Rightarrow D=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}}{\frac{2012}{2}+\frac{2012}{3}+...+\frac{2012}{2011}+\frac{2012}{2012}}\)

\(\Rightarrow D\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}}{2012\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}+\frac{1}{2012}\right)}\)

\(\Rightarrow D=\frac{1}{2012}\)

9 tháng 8 2016

a)\(25\frac{3}{5}:\left(\frac{-2}{3}\right)-15\frac{3}{5}:\left(\frac{-2}{3}\right)\)

\(=\left(25\frac{3}{5}-15\frac{3}{5}\right):\left(-\frac{2}{3}\right)\)

\(=10:\left(\frac{-2}{3}\right)\)

\(=-15\)

b)\(9.\left(\frac{-2}{3}\right)^3+\frac{1}{2}:5\)

\(=9.\frac{-8}{27}+\frac{1}{10}\)

\(=\frac{-8}{3}+\frac{1}{10}\)

\(=\frac{-77}{30}\)

c)\(\left[10\left(\frac{-1}{5}\right)^2+5\left(\frac{-1}{5}\right)+1\right]:\left(\frac{-1}{5}-1\right)\)

\(=\frac{2}{5}:\left(\frac{-6}{5}\right)\)

\(=\frac{-1}{3}\)

 

9 tháng 8 2016

\(a.25\frac{3}{5}:\left(-\frac{2}{3}\right)-15\frac{3}{5}:\left(-\frac{2}{3}\right)\)

\(=\frac{128}{5}:\left(-\frac{2}{3}\right)-\frac{75}{5}:\left(-\frac{2}{3}\right)\)

\(=\left(-\frac{192}{5}\right)-\left(-\frac{117}{5}\right)\)

\(=\frac{\left(-192\right)-\left(-117\right)}{5}\)

\(=-15\)

\(b.9.\left(-\frac{2}{3}\right)^3+\frac{1}{2}:5\)

\(=9.\left(-\frac{8}{27}\right)+\frac{1}{2}:5\)

\(=-\frac{8}{3}+\frac{1}{10}\)

\(=-\frac{77}{30}\)

\(c.\left[10\left(\frac{-1}{5}\right)^2+5\left(\frac{-1}{5}\right)+1\right]:\left(\frac{-1}{5}-1\right)\)

\(=\left[10\left(\frac{-1}{25}\right)+5\left(\frac{-1}{5}\right)+1\right]:\left(\frac{-1}{5}-1\right)\)

\(=\left[\frac{-2}{5}+\left(-1\right)+1\right]:\left(-\frac{6}{5}\right)\)

\(=\left(-\frac{2}{5}\right):\left(-\frac{6}{5}\right)\)

\(=\frac{1}{3}\)

 

4 tháng 1 2017

a) \(A=\left(1:\frac{1}{4}\right).4+25\left(1:\frac{16}{9}:\frac{125}{64}\right):\left(-\frac{27}{8}\right)\)

\(=4.4+25.\frac{36}{125}:\frac{-27}{8}\)

\(=16-\frac{32}{15}=\frac{240}{15}-\frac{32}{15}=\frac{208}{15}\)

A= E387E4837

B = 883433

C = UỲUWFHQWURY48E3947

\(2^3+3.\left(\frac{2}{3}\right)^0-2+\left[\left(-2\right)^2:\frac{1}{2}\right]-8\)

đổi p/s \(\left(\frac{2}{3}\right)^0=1\)

xong tính trong ngoặc vuông,

r xử dụng tính chất phân phối