Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(D=\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}\right):\left(\frac{2011}{1}+\frac{2010}{2}+...+\frac{1}{2011}\right)\)
\(\Rightarrow D=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}}{\frac{2011}{1}+\frac{2010}{2}+\frac{2009}{3}+...+\frac{1}{2011}}\)
\(\Rightarrow D=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}}{\left(\frac{2010}{2}+1\right)+\left(\frac{2009}{3}+1\right)+...+\left(\frac{1}{2011}+1\right)+1}\)
\(\Rightarrow D=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}}{\frac{2012}{2}+\frac{2012}{3}+...+\frac{2012}{2011}+\frac{2012}{2012}}\)
\(\Rightarrow D\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}}{2012\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}+\frac{1}{2012}\right)}\)
\(\Rightarrow D=\frac{1}{2012}\)
a)\(25\frac{3}{5}:\left(\frac{-2}{3}\right)-15\frac{3}{5}:\left(\frac{-2}{3}\right)\)
\(=\left(25\frac{3}{5}-15\frac{3}{5}\right):\left(-\frac{2}{3}\right)\)
\(=10:\left(\frac{-2}{3}\right)\)
\(=-15\)
b)\(9.\left(\frac{-2}{3}\right)^3+\frac{1}{2}:5\)
\(=9.\frac{-8}{27}+\frac{1}{10}\)
\(=\frac{-8}{3}+\frac{1}{10}\)
\(=\frac{-77}{30}\)
c)\(\left[10\left(\frac{-1}{5}\right)^2+5\left(\frac{-1}{5}\right)+1\right]:\left(\frac{-1}{5}-1\right)\)
\(=\frac{2}{5}:\left(\frac{-6}{5}\right)\)
\(=\frac{-1}{3}\)
\(a.25\frac{3}{5}:\left(-\frac{2}{3}\right)-15\frac{3}{5}:\left(-\frac{2}{3}\right)\)
\(=\frac{128}{5}:\left(-\frac{2}{3}\right)-\frac{75}{5}:\left(-\frac{2}{3}\right)\)
\(=\left(-\frac{192}{5}\right)-\left(-\frac{117}{5}\right)\)
\(=\frac{\left(-192\right)-\left(-117\right)}{5}\)
\(=-15\)
\(b.9.\left(-\frac{2}{3}\right)^3+\frac{1}{2}:5\)
\(=9.\left(-\frac{8}{27}\right)+\frac{1}{2}:5\)
\(=-\frac{8}{3}+\frac{1}{10}\)
\(=-\frac{77}{30}\)
\(c.\left[10\left(\frac{-1}{5}\right)^2+5\left(\frac{-1}{5}\right)+1\right]:\left(\frac{-1}{5}-1\right)\)
\(=\left[10\left(\frac{-1}{25}\right)+5\left(\frac{-1}{5}\right)+1\right]:\left(\frac{-1}{5}-1\right)\)
\(=\left[\frac{-2}{5}+\left(-1\right)+1\right]:\left(-\frac{6}{5}\right)\)
\(=\left(-\frac{2}{5}\right):\left(-\frac{6}{5}\right)\)
\(=\frac{1}{3}\)
a) \(A=\left(1:\frac{1}{4}\right).4+25\left(1:\frac{16}{9}:\frac{125}{64}\right):\left(-\frac{27}{8}\right)\)
\(=4.4+25.\frac{36}{125}:\frac{-27}{8}\)
\(=16-\frac{32}{15}=\frac{240}{15}-\frac{32}{15}=\frac{208}{15}\)
\(2^3+3.\left(\frac{2}{3}\right)^0-2+\left[\left(-2\right)^2:\frac{1}{2}\right]-8\)
đổi p/s \(\left(\frac{2}{3}\right)^0=1\)
xong tính trong ngoặc vuông,
r xử dụng tính chất phân phối
Với n thuộc N sao ta có :
\(1-\frac{1}{1+2+3+....+n}=1-\frac{1}{\frac{n\left(n+1\right)}{2}}=1-\frac{2}{n\left(n+1\right)}=\frac{n^2+n-2}{n\left(n+1\right)}\)
\(=\frac{\left(n-1\right)\left(n+2\right)}{\left(n+1\right)n}\)
Áp dụng ta được :
\(P=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}......\frac{2010.2013}{2011.2012}\)
\(=\frac{\left(1.2.3.....2010\right)\left(4.5.6.....2013\right)}{\left(2.3.4.....2011\right)\left(3.4.5.....2012\right)}\)
\(=\frac{2013}{2011.3}=\frac{2013}{6033}=\frac{671}{2011}\)