Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{20}{21}.\frac{27}{28}.\frac{35}{36}....\frac{1325}{1326}=\frac{40}{42}.\frac{54}{56}.\frac{70}{72}....\frac{2650}{2652}\)
\(A=\frac{5.8}{6.7}.\frac{6.9}{7.8}.\frac{7.10}{8.9}....\frac{50.53}{51.52}=\frac{\left(5.6.7...50\right).\left(8.9.10...53\right)}{\left(6.7.8...51\right).\left(7.8.9...52\right)}=\frac{5.53}{51.7}=..\)
\(\left(1-\frac{1}{21}\right)\cdot\left(1-\frac{1}{28}\right)\cdot\left(1-\frac{1}{36}\right)\cdot...\cdot\left(1-\frac{1}{1326}\right)\)
\(=\frac{20}{21}\cdot\frac{27}{28}\cdot\frac{35}{36}\cdot...\cdot\frac{1325}{1326}\)
\(=\frac{40}{42}\cdot\frac{54}{56}\cdot\frac{70}{72}\cdot...\cdot\frac{2650}{2652}\)
\(=\frac{5.8}{6.7}\cdot\frac{6.9}{7.8}\cdot\frac{7.10}{8.9}\cdot....\cdot\frac{50.53}{51.52}\)
\(=\frac{5\cdot6\cdot7\cdot.....\cdot50}{6\cdot7\cdot8\cdot....\cdot51}\cdot\frac{8\cdot9\cdot10\cdot....\cdot53}{7\cdot8\cdot9\cdot...\cdot52}=\frac{5}{51}\cdot\frac{53}{7}=\frac{265}{357}\)
\(\left(1-\frac{1}{21}\right)\left(1-\frac{1}{28}\right)\left(1-\frac{1}{36}\right)\cdot\cdot\cdot\cdot\cdot\left(1-\frac{1}{1326}\right)\)
\(=\frac{20}{21}\cdot\frac{27}{28}\cdot\frac{35}{36}\cdot\cdot\cdot\cdot\cdot\frac{1325}{1326}\)
\(=\frac{40}{42}\cdot\frac{54}{56}\cdot\frac{70}{72}\cdot\cdot\cdot\cdot\cdot\cdot\frac{2650}{2652}\)
\(=\frac{5\cdot8}{6\cdot7}\cdot\frac{6\cdot9}{7\cdot8}\cdot\frac{7\cdot10}{8\cdot9}\cdot\cdot\cdot\cdot\cdot\frac{50\cdot53}{51\cdot52}\)
\(=\frac{\left(5\cdot8\right)\left(6\cdot9\right)\left(7\cdot10\right)\cdot\cdot\cdot\cdot\cdot\left(50\cdot53\right)}{\left(6\cdot7\right)\left(7\cdot8\right)\left(8\cdot9\right).....\left(51\cdot52\right)}\)
\(=\frac{\left(5\cdot6\cdot7\cdot\cdot\cdot\cdot\cdot50\right)\cdot\left(8\cdot9\cdot10\cdot\cdot\cdot\cdot\cdot53\right)}{\left(6\cdot7\cdot8\cdot\cdot\cdot\cdot\cdot51\right)\cdot\left(7\cdot8\cdot9\cdot\cdot\cdot\cdot\cdot52\right)}\)
\(=\frac{5\cdot53}{51\cdot7}=\frac{265}{357}\)
\(A=xemlai\) chưa hưa hiểu Quy luật
\(B=\frac{\left(n.\left(n+2\right)+1\right)}{n\left(n+2\right)}=\frac{\left(n+1\right)^2}{n.\left(n+2\right)}\)
\(B=\frac{2.2}{1.3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}.\frac{5.5}{4.5}...\frac{98.98}{97.99}\frac{99.99}{98.100}\frac{100.100}{99.101}\\\)
\(B=\frac{2.100}{1.101}=\frac{200}{101}\)
xin loi nhung ma minh cung dang khong giai duoc cau nay, minh mong cac ban tren Online Math giup minh nhe
Bạn alibaba nguyễn giải đúng rồi nhưng mình nghĩ cách này sẽ nhanh hơn :
Giải :
Đặt : \(A=\left(1-\frac{1}{21}\right)\left(1-\frac{1}{28}\right)\left(1-\frac{1}{36}\right)........\left(1-\frac{1}{1326}\right)\)
\(\Rightarrow A=\left(1-\frac{2}{6.7}\right)\left(1-\frac{2}{7.8}\right)\left(1-\frac{2}{8.9}\right).......\left(1-\frac{2}{51.52}\right)\)
\(\Rightarrow A=\frac{5.8}{6.7}.\frac{6.9}{7.8}.\frac{7.10}{8.9}.........\frac{50.53}{51.52}\)
\(\Rightarrow A=\frac{\left(5.6.7......50\right)\left(8.9.10......53\right)}{\left(6.7.8.....51\right)\left(7.8.9......52\right)}\)
\(\Rightarrow A=\frac{5}{51}.\frac{53}{7}\)
\(\Rightarrow A=\frac{265}{357}\)
Vậy : \(\left(1-\frac{1}{21}\right)\left(1-\frac{1}{28}\right)\left(1-\frac{1}{36}\right)......\left(1-\frac{1}{1326}\right)=\frac{265}{357}\)
a: \(=\dfrac{5}{3}\left(-16-\dfrac{2}{7}+28+\dfrac{2}{7}\right)=\dfrac{5}{3}\cdot12=20\)
b: \(=\left(4\cdot\dfrac{3}{4}-\dfrac{1}{2}\right)\cdot\dfrac{6}{5}-17=\dfrac{1}{2}\cdot\dfrac{6}{5}-17=\dfrac{3}{5}-17=-\dfrac{82}{5}\)
c: \(=-\left(\dfrac{1}{3}\right)^{50}\cdot3^{50}-\dfrac{2}{3}\cdot\dfrac{1}{4}=-1-\dfrac{1}{6}=-\dfrac{7}{6}\)
e: \(=5.7\left(-6.5-3.5\right)=-5.7\cdot10=-57\)
\(\left(1-\frac{1}{21}\right).\left(1-\frac{1}{28}\right).\left(1-\frac{1}{36}\right)...\left(1-\frac{1}{1326}\right)\)
\(=\frac{20}{21}.\frac{27}{28}.\frac{35}{36}...\frac{1325}{1326}\)
\(=\frac{40}{42}.\frac{54}{56}.\frac{70}{72}...\frac{2650}{2652}\)
\(=\frac{5.8}{6.7}.\frac{6.9}{7.8}.\frac{7.10}{8.9}...\frac{50.53}{51.52}\)
\(=\frac{5.6.7...50}{7.8.9...52}.\frac{8.9.10...53}{6.7.8...51}\)
\(=\frac{5.6}{51.52}.\frac{52.53}{6.7}\)
\(=\frac{5.52}{51.7}=\frac{260}{357}\)
Ủng hộ mk nha ^_-