\(\frac{5}{1.3}-\frac{5}{3.5}+--\frac{5}{5.7}-...-\frac{5}{99.101}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2016

a cong tru loan nen ko hieu

b

A=5/1.4+5/4.7+..5/100.103

3/5.A=3/1.4+3/4.7+..+3/100.103

=1/1-1/4+1/4-1/7+...+1/100-1/103

=1-1/103=102/103

A=(5.102)/(3.103)=5.34/103

10 tháng 8 2020

a) A = \(\frac{5}{1.4}+\frac{29}{4.7}+\frac{71}{7.10}+....+\frac{10301}{100.103}\) (có 34 số hạng)

A = \(\frac{4+1}{1.4}+\frac{4.7+1}{4.7}+\frac{7.10+1}{7.10}+....+\frac{100.103+1}{103.100}\)

A = \(1+\frac{1}{1.4}+1+\frac{1}{4.7}+1+\frac{1}{7.10}+....+1+\frac{1}{100.103}\)

A = \(1.34+\frac{1}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{100.103}\right)\)

A = \(34+\frac{1}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{100}-\frac{1}{103}\right)\)

A = \(34+\frac{1}{3}.\left(1-\frac{1}{103}\right)\)

A = \(34+\frac{1}{3}\cdot\frac{102}{103}\)

A = \(34+\frac{34}{103}=\frac{3536}{103}\)

10 tháng 8 2020

bạn làm hộ mik câu B với

13 tháng 8 2016

Đặt biểu thức là A

=> \(A=\frac{5}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+.....+\frac{1}{99}-\frac{1}{101}\right)\)

=> \(A=\frac{5}{2}\left(1-\frac{1}{101}\right)\)

=> \(A=\frac{5}{2}.\frac{100}{101}\)

=> \(A=\frac{250}{101}\)

13 tháng 8 2016

\(\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{99.101}\)

\(=\frac{5}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\right)\)

\(=\frac{5}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(=\frac{5}{2}.\left(1-\frac{1}{101}\right)\)

\(=\frac{5}{2}.\frac{100}{101}\)

\(=\frac{250}{101}\)

30 tháng 7 2016

\(\frac{5}{1.3}+\frac{5}{3.5}+...+\frac{5}{99.101}\)

\(=\frac{5}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\right)\)

\(=\frac{5}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(=\frac{5}{2}.\left(1-\frac{1}{101}\right)\)

\(=\frac{5}{2}.\frac{100}{101}\)

\(=\frac{250}{101}\)

9 tháng 9 2019

\(=\frac{2}{1.3}.\frac{5}{2}+\frac{2}{3.5}.\frac{5}{2}+...+\frac{2}{99.101}.\frac{5}{2}\)
\(=\frac{5}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\right)\)
\(=\frac{5}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=\frac{5}{2}.\left(1-\frac{1}{101}\right)\)
\(=\frac{5}{2}.\frac{100}{101}\)
\(=\frac{250}{101}\)

9 tháng 9 2019

5/1.3 + 5/3.5 + ... + 5/99.101

= 5/2.(1 - 1/3 + 1/3 - 1/5 + ... + 1/99 - 1/101)

= 5/2.(1 - 1/101)

=5/2.100/101

= 250/101

31 tháng 10 2018

test

30 tháng 10 2018

\(S=\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+..+\frac{5}{97.99}\)

\(=\frac{5}{2}.\left(5+\frac{5}{3}+\frac{5}{5}+\frac{5}{7}+...+\frac{5}{97}+\frac{5}{99}\right)\)

\(=\frac{5}{2}.\left(5+\frac{5}{99}\right)\)

\(=\frac{5}{2}.\frac{500}{99}\)

\(=\frac{1250}{99}\)(có gì sai sót xin bỏ qua cho T^T)

8 tháng 5 2017

Đặt \(A=\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{99\cdot101}\)

\(2A=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-...+\frac{1}{99}-\frac{1}{101}\)

\(2A=\frac{100}{101}\)

\(A=\frac{50}{101}\)

b) \(\frac{2^{10}+3^{31}+2^{40}+3^6}{2^{11}\cdot3^{31}+2^{41}\cdot3^6}=\frac{2^{10}+2^{40}}{2^{11}+2^{41}}\)

\(\frac{2^{10}+2^{40}}{2^{11}+2^{41}}=\frac{1}{2}\)

8 tháng 5 2017

=1/2x(1/1.3+1/3.5+...+1/99.101)

=1/2.(1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/101)

=1/2.(1-1/101)

=1/2.100/101

=50/101

chúc bạn học tốt

3 tháng 4 2020

Ta có:\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{19.21}=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{19.21}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{19}-\frac{1}{21}\right)=\frac{1}{2}\left(1-\frac{1}{21}\right)=\frac{1}{2}.\frac{20}{21}=\frac{10}{21}\)

\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}\)\(+...+\frac{1}{19.21}\)

=\(\frac{2}{2}\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{19.21}\right)\)

=\(\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+....+\frac{2}{19.21}\right)\)

=\(\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{19}-\frac{1}{21}\right)\)

=\(\frac{1}{2}\left(\frac{1}{1}-\frac{1}{21}\right)\)

=\(\frac{1}{2}.\frac{20}{21}\)

=\(\frac{20}{42}=\frac{10}{21}\)