Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2x}{x^2+2xy}+\frac{y}{xy-2y^2}+\frac{4}{x^2-4y^2}\)
\(=\frac{2x}{x\left(x+y\right)}+\frac{y}{y\left(x-2y\right)}+\frac{4}{\left(x-2y\right)\left(x+2y\right)}\)
\(=\frac{2\left(x-2y\right)+x+2y+4}{\left(x+2y\right)\left(x-2y\right)}\)
\(=\frac{3x-2y+4}{\left(x+2y\right)\left(x-2y\right)}\)
\(ĐKXĐ:\hept{\begin{cases}x\ne0\\y\ne0\\x\ne\pm2y\end{cases}}\)
\(\frac{2x}{x^2+2xy}+\frac{y}{xy-2y^2}+\frac{4}{x^2-4y^2}=\frac{2x}{x\left(x+2y\right)}+\frac{y}{y\left(x-2y\right)}+\frac{4}{\left(x+2y\right)\left(x-2y\right)}\)
\(=\frac{2}{x+2y}+\frac{1}{x-2y}+\frac{4}{\left(x+2y\right)\left(x-2y\right)}\)\(=\frac{2\left(x-2y\right)}{\left(x+2y\right)\left(x-2y\right)}+\frac{x+2y}{\left(x+2y\right)\left(x-2y\right)}+\frac{4}{\left(x+2y\right)\left(x-2y\right)}\)
\(=\frac{2\left(x-2y\right)+x+2y+4}{\left(x+2y\right)\left(x-2y\right)}=\frac{2x-4y+x+2y+4}{\left(x+2y\right)\left(x-2y\right)}\)
\(=\frac{3x-2y+4}{\left(x+2y\right)\left(x-2y\right)}\)
Ta có: \(\frac{x^2y+2xy^2+y^3}{2x^2+xy-y^2}\)
\(=\frac{x^2y+xy^2+xy^2+y^3}{2x^2+2xy-xy-y^2}\)
\(=\frac{xy\left(x+y\right)+y^2\left(x+y\right)}{2x\left(x+y\right)-y\left(x+y\right)}\)
\(=\frac{\left(x+y\right)\left(xy+y^2\right)}{\left(2x-y\right)\left(x+y\right)}=\frac{xy+y^2}{2x-y}\left(đpcm\right)\)
Ta có: \(\frac{x^2+3xy+2y^2}{x^3+2x^2y-xy^2-2y^3}\)
\(=\frac{x^2+xy+2xy+2y^2}{x^2\left(x+2y\right)-y^2\left(x+2y\right)}\)
\(=\frac{x\left(x+y\right)+2y\left(x+y\right)}{\left(x^2-y^2\right)\left(x+2y\right)}\)
\(=\frac{\left(x+2y\right)\left(x+y\right)}{\left(x+y\right)\left(x-y\right)\left(x+2y\right)}=\frac{1}{x-y}\left(đpcm\right)\)
\(ĐKXĐ:x\ne y,x\ne0,y\ne0\)
Ta có : \(\frac{3xy^2+x^2y}{xy\left(x-y\right)}-\frac{3x^2y+xy^2}{xy.\left(x-y\right)}\)
\(=\frac{3xy^2+x^2y-3x^2y-xy^2}{xy.\left(x-y\right)}\)
\(=\frac{-3xy.\left(x-y\right)+xy.\left(x-y\right)}{xy.\left(x-y\right)}=\frac{-2xy.\left(x-y\right)}{xy.\left(x-y\right)}=-2\)
\(\frac{3xy^2+x^2y}{xy\left(x-y\right)}-\frac{3x^2y+xy^2}{xy.\left(x-y\right)}\)
\(=\frac{3xy^2+x^2y}{xy\left(x-y\right)}+\frac{-\left(3x^2y+xy^2\right)}{xy.\left(x-y\right)}\)
\(=\frac{3xy^2+x^2y-3x^2y-xy^2}{xy.\left(x-y\right)}\)
\(=\frac{\left(3xy^2-3x^2y\right)+\left(x^2y-xy^2\right)}{xy.\left(x-y\right)}\)
\(=\frac{3xy.\left(y-x\right)+xy.\left(x-y\right)}{xy.\left(x-y\right)}\)
\(=\frac{-3xy.\left(x-y\right)+xy.\left(x-y\right)}{xy.\left(x-y\right)}\)
\(=\frac{\left(x-y\right).\left(-3xy+xy\right)}{xy.\left(x-y\right)}\)
\(=\frac{-3xy+xy}{xy}\)
\(=\frac{-2xy}{xy}\)
\(=-2.\)
a)= \(\frac{-1}{xy}\)
b)\(\frac{3}{2x+6}\) - \(\frac{x-6}{2x^2+6x}\)= \(\frac{3x}{2x\left(x+3\right)}\)- \(\frac{x-6}{2x\left(x+3\right)}\)= \(\frac{2x+6}{2x\left(x+3\right)}\)= \(\frac{2\left(x+3\right)}{2x\left(x+3\right)}\)= \(\frac{1}{x}\)
c)\(\frac{1}{xy-x^2}\)- \(\frac{1}{y^2-xy}\)= \(\frac{1}{x\left(x-y\right)}\)- \(\frac{1}{-y\left(x-y\right)}\)= \(\frac{y}{xy\left(x-y\right)}\)- \(\frac{-x}{xy\left(x-y\right)}\)= \(\frac{y+x}{xy\left(x-y\right)}\)
nhớ tick nhé
\(\left(\frac{1}{x^2-xy}-\frac{3y^2}{x^4-xy^3}-\frac{y}{x^3+x^2y+xy^2}\right):\frac{x+y}{x^2+xy+y^2}\)
=\(\left(\frac{1}{x\left(x-y\right)}-\frac{3y^2}{x\left(x^3-y^3\right)}-\frac{y}{x\left(x^2+xy+y^2\right)}\right):\frac{x+y}{x^2+xy+y^2}\)
=\(\left(\frac{1}{x\left(x-y\right)}-\frac{3y^2}{x\left(x-y\right)\left(x^2+xy+y^2\right)}-\frac{y}{x\left(x^2+xy+y^2\right)}\right):\frac{x+y}{x^2+xy+y^2}\)
=\(\left(\frac{x^2+xy+y^2-3y^2-y\left(x-y\right)}{x\left(x-y\right)\left(x^2+xy+y^2\right)}\right).\frac{x^2+xy+y^2}{x+y}\)
=\(\left(\frac{x^2+xy+-2y^2-xy+y^2}{x\left(x-y\right)\left(x^2+xy+y^2\right)}\right).\left(\frac{x^2+xy+y^2}{x+y}\right)\)
=\(\left(\frac{x^2-y^2}{x\left(x-y\right)}\right).\left(\frac{1}{x+y}\right)\)=\(\frac{\left(x-y\right)\left(x+y\right)}{x\left(x-y\right)\left(x+y\right)}=\frac{1}{x}\)
b) (ko chép lại đề nhé) \(=\frac{x^2\left(x-y\right)^2}{\left(x+y\right)\left(x-y\right)}\cdot\frac{\left(x+y\right)\left(x^2-xy+y^2\right)}{xy\left(x^2-xy+y^2\right)}=\frac{x\left(x-y\right)}{y}\)
Đơn thức đầu tiên trong mẫu của phân thức thứ 2 có lẽ là \(x^3y\)
\(=\frac{3y^2}{x\left(x-y\right)\left(x^2+xy+y^2\right)}+\frac{y}{x\left(x^2+xy+y^2\right)}-\frac{1}{x\left(x-y\right)}\)
\(=\frac{3y^2+y\left(x-y\right)-\left(x^2+xy+y^2\right)}{x\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(=\frac{-\left(x^2-y^2\right)}{x\left(x-y\right)\left(x^2+xy+y^2\right)}=\frac{-\left(x+y\right)}{x\left(x^2+xy+y^2\right)}\)